Are You Really Muted?: A Privacy Analysis of Mute Buttons in VCAs

4.2 Analysis Methodology

To understand what happens when the user presses the
mute button on desktop VCA clients, we utilize various
OS-based tools to trace audio data as it is transferred
from the operating system to the app. Our objective is
not just to establish whether the app has permission to
access the microphone when muted. Instead, we aim to
understand whether the app actually reads microphone
data when the user is muted.

Linux

Audio data transfer from the Linux kernel to the VCAs
is mediated through PulseAudio and ALSA. ALSA is a
kernel subsystem that provides a kernel-level interface
to the audio hardware, and PulseAudio is a userland
process that interfaces with ALSA and provides higher-
level features like mixing and multiplexing. All the
VCAs we studied interface with the userland PulseAu-
dio process.

To intercept audio data in transit from PulseAu-
dio to a VCA, we use the DynamoRIO runtime code
manipulation system [1], which allows us to inject for-
eign code into a running process. Our additional code,
written in C, is called each time a fresh buffer of mi-
crophone data arrives from PulseAudio. We write the
audio buffer’s address in the process’s memory space to
a log file. We then trace the buffer addresses from the log
using IDA Pro. The contents of the buffer are the raw
audio bytes from the microphone. DynamoRIO oversees
the process’s execution by loading and running modified
basic blocks one at a time, which substantially slows the
app’s execution, occasionally causing it to crash.

Windows
Although it is possible to track microphone access by
monitoring the system registry [22], we were not able to
track transfers in real time from the microphone to the
VCA. The registry only records times at which an app
opens or closes a connection to an audio device. The
OS registry—Ilinked to a visual indicator in the system
tray—does not distinguish detailed API calls which en-
code information about whether a VCA is reading audio
data or accessing status flags about microphone activ-
ity.For fine-grained and detailed information, we inter-
cept syscalls from the VCA to the operating system.
In Windows 10, syscalls are obfuscated behind a
userland API library which acts as an intermediary be-
tween the apps and the OS. The Windows API library

— 8

is similar to the Linux/Unix C library syscall wrappers,
except that there is no one-to-one mapping between the
parameters that the app passes to the API and the pa-
rameters that the API passes to the OS. Instead, the
API functions as a higher-level wrapper around system
calls, and there is no official documentation available
from Microsoft detailing how to call the operating sys-
tem directly.

Windows implements many special-purpose API
functions for actions like accessing the microphone,
which in Linux and Unix are all handled as files. We
develop a two-step process to trace audio data in tran-
sit from the Windows OS to the native VCAs. First,
we use a tool called API Monitor [12] to instrument the
userland API with hooks to log pointers to the inputs
and outputs of several microphone-related API calls. We
then use a live binary analysis tool called x64dbg [4] to
read the contents of the buffers out to a log file. We uti-
lize an anti-anti-debugging library called Scylla-Hide [3],
which hides the fact that an app is being debugged to
prevent the app from crashing.

Chromium

Chromium acts as an intermediate layer between the
operating system and the browser based VCAs. To ver-
ify whether web-based VCAs access the microphone
while muted, we inject our own logging code in the
source of Chromium. We instrument the following three
browser functions in Chromium, which are responsi-
ble for transporting audio from the operating system
to the VCA?2. First, the browser initiates audio-related
read_data function, which retrieves the raw microphone
data from the operating system and stores it in a raw au-
dio buffer. Then it calls encode and send_stream func-
tions, which transforms the raw audio into an encoded
stream and transfers the encoded audio stream to the
web-based VCAs.

macOS

An audio subsystem manages microphone data created
by Apple via AVFAudio or the AVAudioEngine inter-
faces [10]. These interfaces have the same purpose and
interact with the audio hardware in userland. VCAs
make a system call to mach_msg_trap within either an
audio interface thread managed by Apple and retrieve

2 Appendix B includes more details about the functions inside
Chromium.



