
toulbar2 User documentation

The toulbar2 developer team

April 12, 2016

1 What is toulbar2

toulbar2 is an exact black box discrete optimization solver targeted at solving
cost function networks (CFN), thus solving the so-called “weighted Constraint
Satisfaction Problem” or WCSP. Cost function networks can be simply described
by a set of discrete variables each having a specific finite domain and a set of
integer cost functions, each involving some of the variables. The WCSP is to find
an assignment of all variables such that the sum of all cost functions is minimum
and lest than a given upper bound often denoted as k or >. Functions can be
typically specified by sparse or full tables but also more concisely as specific
functions called “global cost functions”.

Using on the fly translation, toulbar2 can also directly solve optimization
problems on other graphical models such as Maximum probability Explana-
tion (MPE) on Bayesian networks [14], and Maximum A Posteriori (MAP) on
Markov random field [14]. It can also read partial weighted MaxSAT prob-
lems, Quadratic Pseudo Boolean problems (MAXCUT) as well as Linkage .pre

pedigree files for genotyping error detection and correction.
toulbar2 is exact. It will only report an optimal solution when it has

both identified the solution and proved its optimality. Because it relies only on
integer operations, addition and subtraction, it does not suffer from rounding
errors. In the general case, the WCSP, MPE/BN, MAP/MRF, PWMaxSAT,
QPBO or MAXCUT being all NP-hard problems and thus toulbar2 may take
exponential time to prove optimality. This is however a worst-case behavior and
toulbar2 has been shown to be able to solve to optimality problems with half
a million non Boolean variables defining a search space as large as 2829,440. It
may also fail to solve in reasonable time problems with a search space smaller
than 2264.

toulbar2 provides and uses by default an “anytime” algorithm [2] that
tries to quickly provide good solutions together with an upper bound on the
gap between the cost of each solution and the (unknown) optimal cost. Thus,
even if it is unable to prove optimality, it will bound the quality of the solution
provided.

Beyond the service of providing optimal solutions, toulbar2 can also ex-
haustively enumerate solutions below a cost threshold and perform guaranteed

1

approximate weighted counting of solutions. For stochastic graphical models,
this means that toulbar2 will compute the partition function (or the normal-
izing constant Z). These problems being #P-complete, toulbar2 runtimes
can quickly increase on such problems.

2 How do I install it ?

toulbar2 is an open source solver distributed under the Gnu Public Library
(GPL) as a set of C++ sources managed with git at http://mulcyber.toulouse.
inra.fr/projects/toulbar2. If you want to use a released version, then you
can download there binary archives as a shell archive, an rpm or a Debian
package that should be easy to use on most Linux systems as well as an auto-
installing executable for Windows.

If you want to compile it yourself, you will need a modern C++ compiler,
CMake, Gnu MP Bignum library, a recent version of boost libraries and option-
ally the jemalloc memory management library. You can then clone toulbar2
on your machine and compile it by executing:

git clone http://mulcyber.toulouse.inra.fr/anonscm/git/toulbar2/toulbar2.git

cd toulbar2/toulbar2

mkdir build

cd build

cmake ..

make

Finally, toulbar2 should be soon available in the debian-science section
of the unstable/sid Debian version. It should therefore be directly installable
using:

sudo apt-get install toulbar2

If you want to try toulbar2 on crafted, random, or real problems, please
look for benchmarks in the Cost Function Library.

3 Using it as a black box

Using toulbar2 is just a matter of having a properly formatted input file
describing the cost function network, graphical model, PWMaxSAT, PBO or
Linkage .pre file and executing:

toulbar2 [option parameters] <file>

and toulbar2 will start solving the optimization problem described in its
file argument. By default, the extension of the file (either .wcsp, .wcnf, .cnf,
.qpbo, .uai, .LG, .pre or .bep) is used to determine the nature of the file (see
section 6). There is no specific order for the options or problem file. toulbar2

2

http://mulcyber.toulouse.inra.fr/projects/toulbar2
http://mulcyber.toulouse.inra.fr/projects/toulbar2
https://mulcyber.toulouse.inra.fr/projects/costfunctionlib

comes with decently optimized default option parameters. It is however often
possible to set it up for different target than pure optimization or tune it for
faster action using specific command line options.

4 Quick start

1. Download a binary weighted constraint satisfaction problem (WCSP) file
example.wcsp from the toulbar2’s Documentation Web page. Solve it with
default options:

toulbar2 EXAMPLES/example.wcsp

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.

Cost function decomposition time : 0 seconds.

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 22 (+9.09091%)

Preprocessing time: 0 seconds.

24 unassigned variables, 117 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5)

Initial lower and upper bounds: [22,64[65.625%

New solution: 29 (0 backtracks, 8 nodes, depth 9)

Optimality gap: [23 , 29] 20.6897 % (8 backtracks, 16 nodes)

New solution: 27 (8 backtracks, 24 nodes, depth 8)

Optimality gap: [24 , 27] 11.1111 % (14 backtracks, 30 nodes)

Optimality gap: [25 , 27] 7.40741 % (44 backtracks, 113 nodes)

Optimality gap: [26 , 27] 3.7037 % (54 backtracks, 151 nodes)

Optimality gap: [27 , 27] 0 % (54 backtracks, 157 nodes)

Node redundancy during HBFS: 30.5732 %

Optimum: 27 in 54 backtracks and 157 nodes (205 removals by DEE) and 0.01 seconds.

end.

2. Solve a WCSP using INCOP, a local search method [22] applied just after
preprocessing, in order to find a good upper bound before a complete
search:

toulbar2 EXAMPLES/example.wcsp -i

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.

Cost function decomposition time : 0 seconds.

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 22 (+9.09091%)

Preprocessing time: 0 seconds.

New solution: 27 (0 backtracks, 0 nodes, depth 1)

INCOP solving time: 0.23 seconds.

24 unassigned variables, 117 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5)

Initial lower and upper bounds: [22,27[18.5185%

Optimality gap: [23 , 27] 14.8148 % (19 backtracks, 48 nodes)

Optimality gap: [24 , 27] 11.1111 % (23 backtracks, 60 nodes)

Optimality gap: [25 , 27] 7.40741 % (53 backtracks, 130 nodes)

Optimality gap: [27 , 27] 0 % (65 backtracks, 167 nodes)

Node redundancy during HBFS: 22.1557 %

Optimum: 27 in 65 backtracks and 167 nodes (137 removals by DEE) and 0.24 seconds.

end.

3. Solve a WCSP with an initial upper bound and save its (first) optimal
solution in filename ”example.sol”:

toulbar2 EXAMPLES/example.wcsp -ub=28 -w=example.sol

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.

Cost function decomposition time : 0 seconds.

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 22 (+9.09091%)

Preprocessing time: 0 seconds.

24 unassigned variables, 117 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5)

Initial lower and upper bounds: [22,28[21.4286%

Optimality gap: [23 , 28] 17.8571 % (7 backtracks, 14 nodes)

New solution: 27 (7 backtracks, 20 nodes, depth 6)

3

Optimality gap: [23 , 27] 14.8148 % (12 backtracks, 25 nodes)

Optimality gap: [24 , 27] 11.1111 % (26 backtracks, 67 nodes)

Optimality gap: [25 , 27] 7.40741 % (58 backtracks, 163 nodes)

Optimality gap: [27 , 27] 0 % (70 backtracks, 217 nodes)

Node redundancy during HBFS: 35.4839 %

Optimum: 27 in 70 backtracks and 217 nodes (158 removals by DEE) and 0 seconds.

end.

cat example.sol

each value corresponds to one variable assignment in problem file order

1 0 1 2 3 4 0 4 2 0 3 1 0 2 3 0 1 3 2 4 2 1 0 4 4

4. Download a larger WCSP file scen06.wcsp from the toulbar2’s Documen-
tation Web page. Solve it using a limited discrepancy search strategy [13]
in order to speed-up the search for finding good upper bounds first1:

toulbar2 EXAMPLES/scen06.wcsp -l

Read 100 variables, with 44 values at most, and 1222 cost functions, with maximum arity 2.

Cost function decomposition time : 0 seconds.

Preprocessing time: 0.16 seconds.

82 unassigned variables, 3273 values in all current domains (med. size:44, max size:44) and 327 non-unary cost functions (med. degree:6)

Initial lower and upper bounds: [0,248338[100%

--- [0] LDS 0 --- (0 nodes)

c 2097152 Bytes allocated for x stack.

c 4194304 Bytes allocated for x stack.

c 8388608 Bytes allocated for x stack.

New solution: 8451 (0 backtracks, 110 nodes, depth 1)

--- [0] LDS 1 --- (110 nodes)

New solution: 6134 (2 backtracks, 386 nodes, depth 2)

New solution: 5795 (4 backtracks, 527 nodes, depth 2)

New solution: 5711 (5 backtracks, 590 nodes, depth 2)

New solution: 5444 (6 backtracks, 676 nodes, depth 2)

New solution: 4828 (7 backtracks, 747 nodes, depth 2)

New solution: 4507 (9 backtracks, 853 nodes, depth 2)

New solution: 4408 (10 backtracks, 910 nodes, depth 2)

New solution: 4145 (15 backtracks, 1047 nodes, depth 2)

New solution: 3730 (18 backtracks, 1112 nodes, depth 2)

--- [0] LDS 2 --- (1132 nodes)

New solution: 3635 (64 backtracks, 1606 nodes, depth 3)

New solution: 3585 (150 backtracks, 2169 nodes, depth 3)

New solution: 3493 (168 backtracks, 2283 nodes, depth 3)

New solution: 3472 (171 backtracks, 2312 nodes, depth 3)

--- [0] LDS 4 --- (2420 nodes)

New solution: 3463 (988 backtracks, 5683 nodes, depth 5)

New solution: 3441 (990 backtracks, 5711 nodes, depth 5)

New solution: 3401 (1101 backtracks, 6178 nodes, depth 5)

--- [0] Search with no discrepancy limit --- (8111 nodes)

Optimality gap: [349 , 3401] 89.7383 % (44869 backtracks, 94455 nodes)

New solution: 3400 (56746 backtracks, 118233 nodes, depth 24)

New solution: 3399 (56747 backtracks, 118235 nodes, depth 23)

New solution: 3389 (56749 backtracks, 118248 nodes, depth 29)

Optimality gap: [1023 , 3389] 69.8141 % (90007 backtracks, 184743 nodes)

Optimality gap: [1306 , 3389] 61.4636 % (91295 backtracks, 187319 nodes)

Optimality gap: [1818 , 3389] 46.3559 % (93973 backtracks, 192675 nodes)

Optimality gap: [2261 , 3389] 33.2842 % (94054 backtracks, 192837 nodes)

Optimality gap: [2777 , 3389] 18.0584 % (94060 backtracks, 192849 nodes)

Optimum: 3389 in 94062 backtracks and 192853 nodes (375927 removals by DEE) and 55.23 seconds.

end.

5. Download file 404.wcsp. Solve it using Depth-First Brand and Bound with
Tree Decomposition (BTD) [9] based on a min-fill variable ordering:

toulbar2 EXAMPLES/404.wcsp -O=-3 -B=1

Read 100 variables, with 4 values at most, and 710 cost functions, with maximum arity 3.

Cost function decomposition time : 0 seconds.

Reverse DAC lower bound: 63 (+28.5714%)

Reverse DAC lower bound: 65 (+3.07692%)

Reverse DAC lower bound: 66 (+1.51515%)

Preprocessing time: 0.01 seconds.

1By default, toulbar2 uses another diversification strategy based on hybrid best-first
search [2].

4

88 unassigned variables, 226 values in all current domains (med. size:2, max size:4) and 591 non-unary cost functions (med. degree:13)

Initial lower and upper bounds: [66,155[57.4194%

Tree decomposition width : 19

Tree decomposition height : 43

Number of clusters : 47

Tree decomposition time: 0 seconds.

New solution: 124 (22 backtracks, 40 nodes, depth 2)

Optimality gap: [69 , 124] 44.3548 % (22 backtracks, 40 nodes)

New solution: 123 (36 backtracks, 69 nodes, depth 2)

Optimality gap: [76 , 123] 38.2114 % (36 backtracks, 69 nodes)

New solution: 117 (166 backtracks, 333 nodes, depth 2)

Optimality gap: [87 , 117] 25.641 % (166 backtracks, 333 nodes)

Optimality gap: [89 , 117] 23.9316 % (237 backtracks, 521 nodes)

Optimality gap: [92 , 117] 21.3675 % (270 backtracks, 638 nodes)

New solution: 114 (375 backtracks, 897 nodes, depth 2)

Optimality gap: [97 , 114] 14.9123 % (375 backtracks, 897 nodes)

Optimality gap: [99 , 114] 13.1579 % (437 backtracks, 1108 nodes)

Optimality gap: [100 , 114] 12.2807 % (439 backtracks, 1130 nodes)

Optimality gap: [101 , 114] 11.4035 % (446 backtracks, 1198 nodes)

Optimality gap: [102 , 114] 10.5263 % (450 backtracks, 1207 nodes)

Optimality gap: [104 , 114] 8.77193 % (470 backtracks, 1265 nodes)

Optimality gap: [105 , 114] 7.89474 % (528 backtracks, 1457 nodes)

Optimality gap: [106 , 114] 7.01754 % (528 backtracks, 1464 nodes)

Optimality gap: [107 , 114] 6.14035 % (534 backtracks, 1490 nodes)

Optimality gap: [109 , 114] 4.38596 % (545 backtracks, 1533 nodes)

Optimality gap: [110 , 114] 3.50877 % (545 backtracks, 1549 nodes)

Optimality gap: [112 , 114] 1.75439 % (556 backtracks, 1585 nodes)

Optimality gap: [113 , 114] 0.877193 % (556 backtracks, 1601 nodes)

Optimality gap: [114 , 114] 0 % (556 backtracks, 1618 nodes)

HBFS open list restarts: 0 % and reuse: 10.8635 % of 359

Node redundancy during HBFS: 33.1891 %

Optimum: 114 in 556 backtracks and 1618 nodes (22 removals by DEE) and 0.03 seconds.

end.

6. Solve the same problem using Russian Doll Search exploiting BTD [23]:

toulbar2 EXAMPLES/404.wcsp -O=-3 -B=2

Read 100 variables, with 4 values at most, and 710 cost functions, with maximum arity 3.

Cost function decomposition time : 0 seconds.

Reverse DAC lower bound: 63 (+28.5714%)

Reverse DAC lower bound: 65 (+3.07692%)

Reverse DAC lower bound: 66 (+1.51515%)

Preprocessing time: 0.01 seconds.

88 unassigned variables, 226 values in all current domains (med. size:2, max size:4) and 591 non-unary cost functions (med. degree:13)

Initial lower and upper bounds: [66,155[57.4194%

Tree decomposition width : 19

Tree decomposition height : 43

Number of clusters : 47

Tree decomposition time: 0 seconds.

--- Solving cluster subtree 5 ...

New solution: 0 (0 backtracks, 0 nodes, depth 1)

--- done cost = [0,0] (0 backtracks, 0 nodes, depth 1)

--- Solving cluster subtree 6 ...

New solution: 0 (0 backtracks, 0 nodes, depth 1)

--- done cost = [0,0] (0 backtracks, 0 nodes, depth 1)

--- Solving cluster subtree 7 ...

...

--- Solving cluster subtree 44 ...

New solution: 41 (398 backtracks, 692 nodes, depth 7)

New solution: 40 (409 backtracks, 708 nodes, depth 7)

New solution: 36 (419 backtracks, 738 nodes, depth 21)

--- done cost = [36,36] (507 backtracks, 878 nodes, depth 1)

--- Solving cluster subtree 46 ...

New solution: 114 (507 backtracks, 878 nodes, depth 1)

--- done cost = [114,114] (507 backtracks, 878 nodes, depth 1)

Optimum: 114 in 507 backtracks and 878 nodes (13 removals by DEE) and 0.02 seconds.

end.

7. Solve a WCSP using the original Russian Doll Search method [25] with
static variable ordering (following problem file) and soft arc consistency:

toulbar2 EXAMPLES/505.wcsp -B=3 -j=1 -svo -k=1

5

Read 240 variables, with 4 values at most, and 2242 cost functions, with maximum arity 3.

Cost function decomposition time : 0 seconds.

Preprocessing time: 0.01 seconds.

233 unassigned variables, 666 values in all current domains (med. size:2, max size:4) and 1966 non-unary cost functions (med. degree:16)

Initial lower and upper bounds: [2,34347[99.9942%

Tree decomposition width : 59

Tree decomposition height : 233

Number of clusters : 239

Tree decomposition time: 0.02 seconds.

--- Solving cluster subtree 0 ...

New solution: 0 (0 backtracks, 0 nodes, depth 1)

--- done cost = [0,0] (0 backtracks, 0 nodes, depth 1)

--- Solving cluster subtree 1 ...

New solution: 0 (0 backtracks, 0 nodes, depth 1)

--- done cost = [0,0] (0 backtracks, 0 nodes, depth 1)

--- Solving cluster subtree 2 ...

...

--- Solving cluster subtree 3 ...

New solution: 21253 (26963 backtracks, 48851 nodes, depth 2)

New solution: 21251 (26991 backtracks, 48883 nodes, depth 3)

--- done cost = [21251,21251] (26992 backtracks, 48883 nodes, depth 1)

--- Solving cluster subtree 238 ...

New solution: 21253 (26992 backtracks, 48883 nodes, depth 1)

--- done cost = [21253,21253] (26992 backtracks, 48883 nodes, depth 1)

Optimum: 21253 in 26992 backtracks and 48883 nodes (0 removals by DEE) and 5.87 seconds.

end.

8. Download a Markov Random Field (MRF) file pedigree9.uai in UAI format
from the toulbar2’s Documentation Web page. Solve it using bounded (of
degree at most 8) variable elimination enhanced by cost function decom-
position in preprocessing [12] followed by BTD exploiting only small-size
(less than four variables) separators:

toulbar2 EXAMPLES/pedigree9.uai -O=-3 -p=-8 -B=1 -r=4

Read 1118 variables, with 7 values at most, and 1118 cost functions, with maximum arity 4.

Generic variable elimination of degree 4

Maximum degree of generic variable elimination: 4

Cost function decomposition time : 0.01 seconds.

Preprocessing time: 0.11 seconds.

232 unassigned variables, 517 values in all current domains (med. size:2, max size:7) and 415 non-unary cost functions (med. degree:6)

Initial lower and upper bounds: [553902779,13246577453[95.8185%

Tree decomposition width : 227

Tree decomposition height : 230

Number of clusters : 890

Tree decomposition time: 0.05 seconds.

New solution: 865165767 log10like: -129.591 prob: 2.56352e-130 (72 backtracks, 140 nodes, depth 2)

New solution: 844300454 log10like: -128.685 prob: 2.06541e-129 (128 backtracks, 254 nodes, depth 2)

New solution: 819061410 log10like: -127.589 prob: 2.57706e-128 (185 backtracks, 368 nodes, depth 2)

New solution: 812515216 log10like: -127.305 prob: 4.95931e-128 (361 backtracks, 756 nodes, depth 2)

New solution: 806836620 log10like: -127.058 prob: 8.75064e-128 (399 backtracks, 834 nodes, depth 2)

New solution: 784864376 log10like: -126.104 prob: 7.87558e-127 (541 backtracks, 1147 nodes, depth 2)

New solution: 734383216 log10like: -123.911 prob: 1.22645e-124 (871 backtracks, 1935 nodes, depth 2)

New solution: 733157137 log10like: -123.858 prob: 1.38643e-124 (1011 backtracks, 2221 nodes, depth 2)

New solution: 727478541 log10like: -123.611 prob: 2.44634e-124 (1278 backtracks, 2773 nodes, depth 2)

New solution: 711184893 log10like: -122.904 prob: 1.24779e-123 (1672 backtracks, 3583 nodes, depth 2)

HBFS open list restarts: 0 % and reuse: 40.6146 % of 1497

Node redundancy during HBFS: 33.2613 %

Optimum: 711184893 log10like: -122.904 prob: 1.24779e-123 in 15757 backtracks and 47187 nodes (15233 removals by DEE) and 3.94 seconds.

end.

9. Download another MRF file GeomSurf-7-gm256.uai. Solve it using Virtual
Arc Consistency (VAC) in preprocessing [5] and exploit a VAC-based value
ordering heuristic [6]:

toulbar2 EXAMPLES/GeomSurf-7-gm256.uai -A -V

Read 787 variables, with 7 values at most, and 3527 cost functions, with maximum arity 3.

Lb before VAC: 4515002208

Cost function decomposition time : 0 seconds.

6

Reverse DAC lower bound: 5851002592 (+0.220958%)

Preprocessing VAC mean lb/incr: 2.51008e+06 total increments: 524 cyclesize: 21.666 k: 1.31489 (mean), 12 (max)

Lb after VAC: 5905751286

Preprocessing time: 2.72 seconds.

730 unassigned variables, 4826 values in all current domains (med. size:7, max size:7) and 3133 non-unary cost functions (med. degree:6)

Initial lower and upper bounds: [5905751286,111615200815[94.7088%

c 2097152 Bytes allocated for x stack.

c 4194304 Bytes allocated for x stack.

New solution: 6021337963 log10like: -472.649 prob: 2.24179e-473 (0 backtracks, 118 nodes, depth 119)

Optimality gap: [5913682376 , 6021337963] 1.7879 % (102 backtracks, 220 nodes)

New solution: 5922481881 log10like: -468.356 prob: 4.40413e-469 (102 backtracks, 287 nodes, depth 65)

Optimality gap: [5922481881 , 5922481881] 0 % (142 backtracks, 327 nodes)

VAC mean lb/incr: -nan total increments: 0 cyclesize: -nan k: -nan (mean), 0 (max)

Node redundancy during HBFS: 0.917431 %

Optimum: 5922481881 log10like: -468.356 prob: 4.40413e-469 in 142 backtracks and 327 nodes (6334 removals by DEE) and 2.91 seconds.

end.

10. Download another MRF file 1CM1.uai. Solve it by applying first a strong
dominance pruning test in preprocessing, and secondly, a modified variable
ordering heuristic during search [3]:

toulbar2 EXAMPLES/1CM1.uai -dee=2 -m=2

Read 37 variables, with 350 values at most, and 703 cost functions, with maximum arity 2.

Cost function decomposition time : 0 seconds.

Reverse DAC lower bound: 102868791154 (+0.010277%)

Preprocessing time: 11.4 seconds.

37 unassigned variables, 1679 values in all current domains (med. size:33, max size:350) and 624 non-unary cost functions (med. degree:35)

Initial lower and upper bounds: [102868791154,239074057808[56.972%

c 2097152 Bytes allocated for x stack.

c 4194304 Bytes allocated for x stack.

c 8388608 Bytes allocated for x stack.

c 16777216 Bytes allocated for x stack.

c 33554432 Bytes allocated for x stack.

c 67108864 Bytes allocated for x stack.

New solution: 104206588216 log10like: 5413.18 prob: inf (0 backtracks, 48 nodes, depth 49)

Optimality gap: [103905905484 , 104206588216] 0.288545 % (22 backtracks, 70 nodes)

New solution: 104174014744 log10like: 5414.59 prob: inf (22 backtracks, 82 nodes, depth 3)

Optimality gap: [103963607615 , 104174014744] 0.201977 % (23 backtracks, 83 nodes)

Optimality gap: [104010471712 , 104174014744] 0.15699 % (24 backtracks, 93 nodes)

Optimality gap: [104174014744 , 104174014744] 0 % (25 backtracks, 96 nodes)

Node redundancy during HBFS: 19.7917 %

Optimum: 104174014744 log10like: 5414.59 prob: inf in 25 backtracks and 96 nodes (3803 removals by DEE) and 12 seconds.

end.

11. Download a weighted Max-SAT file brock200 4.clq.wcnf in wcnf format
from the toulbar2’s Documentation Web page. Solve it using a modified
variable ordering heuristic [3]:

toulbar2 EXAMPLES/brock200_4.clq.wcnf -m=1

c Read 200 variables, with 2 values at most, and 7011 clauses, with maximum arity 2.

Cost function decomposition time : 0 seconds.

Reverse DAC lower bound: 91 (+86.8132%)

Reverse DAC lower bound: 92 (+1.08696%)

Preprocessing time: 0.03 seconds.

200 unassigned variables, 400 values in all current domains (med. size:2, max size:2) and 6811 non-unary cost functions (med. degree:68)

Initial lower and upper bounds: [92,200[54%

New solution: 189 (0 backtracks, 9 nodes, depth 10)

New solution: 188 (20 backtracks, 55 nodes, depth 10)

New solution: 187 (113 backtracks, 326 nodes, depth 20)

New solution: 186 (428 backtracks, 1013 nodes, depth 21)

New solution: 185 (8011 backtracks, 17396 nodes, depth 14)

New solution: 184 (13807 backtracks, 29658 nodes, depth 11)

New solution: 183 (13821 backtracks, 29682 nodes, depth 7)

Node redundancy during HBFS: 26.313 %

Optimum: 183 in 299378 backtracks and 812567 nodes (3362 removals by DEE) and 22.38 seconds.

end.

12. Download another WCSP file latin4.wcsp. Count the number of feasible
solutions:

toulbar2 EXAMPLES/latin4.wcsp -a

7

Read 16 variables, with 4 values at most, and 24 cost functions, with maximum arity 4.

Cost function decomposition time : 0 seconds.

Reverse DAC lower bound: 48 (+2.08333%)

Preprocessing time: 0 seconds.

16 unassigned variables, 64 values in all current domains (med. size:4, max size:4) and 8 non-unary cost functions (med. degree:6)

Initial lower and upper bounds: [48,1000[95.2%

Optimality gap: [49 , 1000] 95.1 % (12 backtracks, 26 nodes)

Optimality gap: [58 , 1000] 94.2 % (353 backtracks, 813 nodes)

Optimality gap: [72 , 1000] 92.8 % (575 backtracks, 1360 nodes)

Optimality gap: [1000 , 1000] 0 % (575 backtracks, 1369 nodes)

Number of solutions : = 576

Time : 0.3 seconds

... in 575 backtracks and 1369 nodes

end.

13. Download a crisp CSP file GEOM40 6.wcsp (initial upper bound equal
to 1). Count the number of solutions using #BTD [11] using a min-fill
variable ordering2:

toulbar2 EXAMPLES/GEOM40_6.wcsp -O=-3 -a -B=1

Read 40 variables, with 6 values at most, and 78 cost functions, with maximum arity 2.

Cost function decomposition time : 0 seconds.

Preprocessing time: 0 seconds.

40 unassigned variables, 240 values in all current domains (med. size:6, max size:6) and 78 non-unary cost functions (med. degree:4)

Initial lower and upper bounds: [0,1[100%

Tree decomposition width : 5

Tree decomposition height : 20

Number of clusters : 29

Tree decomposition time: 0 seconds.

Number of solutions : = 4.11111e+23

Number of #goods : 3993

Number of used #goods : 17190

Size of sep : 4

Time : 0.06 seconds

... in 13689 backtracks and 27378 nodes

end.

14. Get a quick approximation of the number of solutions of a CSP with
Approx#BTD [11]:

toulbar2 EXAMPLES/GEOM40_6.wcsp -O=-3 -a -B=1 -D

Read 40 variables, with 6 values at most, and 78 cost functions, with maximum arity 2.

Cost function decomposition time : 0 seconds.

Preprocessing time: 0 seconds.

40 unassigned variables, 240 values in all current domains (med. size:6, max size:6) and 78 non-unary cost functions (med. degree:4)

Initial lower and upper bounds: [0,1[100%

part 1 : 40 variables and 71 constraints (really added)

part 2 : 10 variables and 7 constraints (really added)

--> number of parts : 2

--> time : 0 seconds.

Tree decomposition width : 5

Tree decomposition height : 17

Number of clusters : 33

Tree decomposition time: 0 seconds.

Cartesian product : 1.33675e+31

Upper bound of number of solutions : <= 1.71993e+24

Number of solutions : ~= 4.8e+23

Number of #goods : 468

Number of used #goods : 4788

Size of sep : 3

Time : 0.01 seconds

... in 3738 backtracks and 7476 nodes

end.

2Warning, cannot use BTD to find all solutions in optimization.

8

5 Command line options

If you just execute:

toulbar2

toulbar2 will give you its (long) list of optional parameter which we now
describe in more detail.

To deactivate a default command line option, just use the command-line
option followed by “:”. For example:

toulbar2 -dee: <file>

will disable the default Dead End Elimination [8] (aka Soft Neighborhood
Substitutability) preprocessing.

5.1 General control

-a finds all solutions (or count the number of zero-cost satisfiable solutions in
conjunction with BTD)

-D approximate satisfiable solution count with BTD

-logz computes log of probability of evidence (i.e. log partition function or
log(Z) or PR task) for graphical models only (problem file extension .uai)

-timer=[integer] give a CPU time limit in seconds. toulbar2 will stop after
the specified CPU time has been consumed. The time limit is a CPU user
time limit, not wall clock time limit.

5.2 Preprocessing

-nopre deactivates all preprocessing options (equivalent to -e: -p: -t: -f: -dec:
-n: -mst: -dee:)

-p=[integer] preprocessing only: general variable elimination of degree less
than or equal to the given value (default value is -1)

-t=[integer] preprocessing only: simulates restricted path consistency by adding
ternary cost functions on triangles of binary cost functions within a given
maximum space limit (in MB)

-f=[integer] preprocessing only: variable elimination of functional (f=1) (resp.
bijective (f=2)) variables (default value is 1)

-dec preprocessing only: pairwise decomposition [12] of cost functions with
arity >= 3 into smaller arity cost functions (default option)

-n=[integer] preprocessing only: projects n-ary cost functions on all binary
cost functions if n is lower than the given value (default value is 10).
See [12].

9

-mst find a maximum spanning tree ordering for DAC

-M=[integer] apply the Min Sum Diffusion algorithm (default is inactivated,
with a number of iterations of 0). See [6].

5.3 Initial upper bounding

-l=[integer] limited discrepancy search [13], use a negative value to stop the
search after the given absolute number of discrepancies has been explored
(discrepancy bound = 4 by default)

-L=[integer] randomized (quasi-random variable ordering) search with restart
(maximum number of nodes = 10000 by default)

-i=[”string”] initial upper bound found by INCOP local search solver [22].
The string parameter is optional, using “0 1 3 idwa 100000 cv v 0 200
1 0 0” by default with the following meaning: stoppinglowerbound ran-
domseed nbiterations method nbmoves neighborhoodchoice neighborhood-
choice2 minnbneighbors maxnbneighbors neighborhoodchoice3 autotuning
tracemode.

-x=[(,i=a)*] assigns variable of index i to value a (multiple assignments are
separated by a comma and no space) (without any argument, a complete
assignment – used as initial upper bound and as a value heuristic – read
from default file ”sol” or given directly as an additional input filename
with ”.sol” extension and without -x)

5.4 Tree search algorithms and tree decomposition selec-
tion

-hbfs=[integer] hybrid best-first search [2], restarting from the root after a
given number of backtracks (default value is 10000)

-open=[integer] hybrid best-first search limit on the number of stored open
nodes (default value is -1)

-B=[integer] (0) DFBB, (1) BTD [9], (2) RDS-BTD [23], (3) RDS-BTD with
path decomposition instead of tree decomposition [23] (default value is 0)

-O=[filename] reads a variable elimination order from a file in order to build a
tree decomposition (if BTD-like and/or variable elimination methods are
used). It is also used as a DAC ordering.

-O=[negative integer] build a tree decomposition (if BTD-like and/or vari-
able elimination methods are used) and also a compatible DAC ordering
using

• (-1) maximum cardinality search ordering,

• (-2) minimum degree ordering,

10

• (-3) minimum fill-in ordering,

• (-4) maximum spanning tree ordering (see -mst),

• (-5) reverse Cuthill-Mckee ordering,

• (-6) approximate minimum degree ordering

If not specified, then use the variable order in which variables appear in
the problem file.

-j=[integer] splits large clusters into a chain of smaller embedded clusters with
a number of proper variables less than this number (use options ”-B=3
-j=1 -svo -k=1” for pure RDS, use value 0 for no splitting) (default value
is 0).

-r=[integer] limit on the maximum cluster separator size (merge cluster with
its father otherwise, use a negative value for no limit) (default value is -1)

-X=[integer] limit on the minimum number of proper variables in a cluster
(merge cluster with its father otherwise, use a zero for no limit) (default
value is 0)

-E merges leaf clusters with their fathers if small local treewidth (in conjunction
with option ”-e”)

-R=[integer] choice for a specific root cluster number

-I=[integer] choice for solving only a particular rooted cluster subtree (with
RDS-BTD only)

5.5 Node processing & bounding options

-e=[integer] performs “on the fly” variable elimination of variable with small
degree (less than or equal to a specified value, default is 3 creating a
maximum of ternary cost functions). See [15].

-k=[integer] soft local consistency level (NC [16] with Strong NIC for global
cost functions=0 [19], (G)AC=1 [24, 16], D(G)AC=2 [7], FD(G)AC=3 [17],
(weak) ED(G)AC=4 [10, 20]) (default value is 4). See also [6, 21].

-A=[integer] enforces VAC [5] at each search node with a search depth less
than a given value (default value is 0)

-dee=[integer] restricted dead-end elimination [8] (value pruning by domi-
nance rule from EAC value (dee>= 1 and dee<= 3)) and soft neighbor-
hood substitutability (in preprocessing (dee=2 or dee=4) or during search
(dee=3)) (default value is 1)

-o ensures an optimal worst-case time complexity of DAC and EAC (can be
slower in practice)

11

5.6 Branching, variable and value ordering

-svo searches using a static variable ordering heuristic. The variable order value
used will be the same order as the DAC order.

-b searches using binary branching (by default) instead of n-ary branching.
Uses binary branching for interval domains and small domains and di-
chotomic branching for large enumerated domains (see option -d).

-c searches using binary branching with last conflict backjumping variable or-
dering heuristic [18].

-q=[integer] use weighted degree variable ordering heuristic [4] if the number
of cost functions is less than the given value (default value is 10000).

-var=[integer] searches by branching only on the first [given value] decision
variables, assuming the remaining variables are intermediate variables that
will be completely assigned by the decision variables (use a zero if all
variables are decision variables, default value is 0)

-m=[integer] use a variable ordering heuristic that selects first variables such
that the sum of the mean (m=1) or median (m=2) cost of all incident cost
functions is maximum [3] (in conjunction with weighted degree heuristic
-q) (default value is 0: unused).

-d=[integer] searches using dichotomic branching. The default d=1 splits
domains in the middle of domain range while d=2 splits domains in the
middle of the sorted domain based on unary costs.

-sortd sorts domains in preprocessing based on increasing unary costs (works
only for binary WCSPs).

5.7 Console output

-help shows the default help message that toulbar2 prints when it gets no
argument.

-v=[integer] sets the verbosity level (default 0).

-Z=[integer] debug mode (save problem at each node if verbosity option -
v=num >= 1 and -Z=num >= 3)

-s shows each solution found during search. The solution is printed on one line,
giving the value (integer) of each variable successively in increasing file
order.

12

5.8 File output

-w=[filename] writes last solution found in the specified filename (or ”sol” if
no parameter is given). The current directory is used as a relative path.

-z=[filename] saves problem in wcsp format in filename (or ”problem.wcsp”
if no parameter is given) writes also the graphviz dot file and the degree
distribution of the input problem

-z=[integer] 1: saves original instance (by default), 2: saves after preprocess-
ing (this option can be used in combination with -z=filename)

-x=[(,i=a)*] assigns variable of index i to value a (multiple assignments are
separated by a comma and no space) (without any argument, a complete
assignment – used as initial upper bound and as value heuristic – read
from default file ”sol” or given as input filename with ”.sol” extension)

5.9 Probability representation and numerical control

-precision=[integer] probability/real precision is a conversion factor (a power
of ten) for representing fixed point numbers (default value is 7)

-epsilon=[float] approximation factor for computing the partition function
(default value is 1000 representing ε = 1

1000)

5.10 Random problem generation

-random=[bench profile] bench profile must be specified as follows.

• n and d are respectively the number of variable and the maximum
domain size of the random problem.

bin-n-d-t1-p2-seed

– t1 is the tightness in percentage % of random binary cost func-
tions

– p2 is the number of binary cost functions to include

– the seed parameter is optional

binsub-n-d-t1-p2-p3-seed binary random & submodular cost func-
tions

– t1 is the tightness in percentage % of random cost functions

– p2 is the number of binary cost functions to include

– p3 is the percentage % of submodular cost functions among p2
cost functions (plus 10 permutations of two randomly-chosen val-
ues for each domain)

tern-n-d-t1-p2-p3-seed

– p3 is the number of ternary cost functions

nary-n-d-t1-p2-p3...-pn-seed

13

– pn is the number of n-ary cost functions

salldiff-n-d-t1-p2-p3...-pn-seed

– pn is the number of salldiff global cost functions (p2 and p3 still
being used for the number of random binary and ternary cost
functions). salldiff can be replaced by gcc or regular keywords
with three possible forms (e.g., sgcc, sgccdp, wgcc).

6 Input File formats

Notice that by default toulbar2 distinguishes file formats based on their ex-
tension.

6.1 wcsp format (.wcsp file extension)

It is a text format composed of a list of numerical and string terms separated
by spaces. Instead of using names for making reference to variables, variable
indexes are employed. The same for domain values. All indexes start at zero.

Cost functions can be defined in intention (see below) or in extension, by
their list of tuples. A default cost value is defined per function in order to reduce
the size of the list. Only tuples with a different cost value should be given (not
mandatory). All the cost values must be positive. The arity of a cost function in
extension may be equal to zero. In this case, there is no tuples and the default
cost value is added to the cost of any solution. This can be used to represent a
global lower bound constant of the problem.

The wcsp file format is composed of three parts: a problem header, the list
of variable domain sizes, and the list of cost functions.

• Header definition for a given problem:

<Problem name>

<Number of variables (N)>

<Maximum domain size>

<Number of cost functions>

<Initial global upper bound of the problem (UB)>

The goal is to find an assignment of all the variables with minimum total
cost, strictly lower than UB. Tuples with a cost greater than or equal to
UB are forbidden (hard constraint).

• Definition of domain sizes

<Domain size of variable with index 0>

...

<Domain size of variable with index N - 1>

14

Note

domain values range from zero to size-1
a negative domain size is interpreted as a variable with an interval
domain in [0,−size− 1]

Warning

variables with interval domains are restricted to arithmetic and dis-
junctive cost functions in intention (see below)

• General definition of cost functions

– Definition of a cost function in extension

<Arity of the cost function>

<Index of the first variable in the scope of the cost function>

...

<Index of the last variable in the scope of the cost function>

<Default cost value>

<Number of tuples with a cost different than the default cost>

followed by for every tuple with a cost different than the default cost:

<Index of the value assigned to the first variable in the scope>

...

<Index of the value assigned to the last variable in the scope>

<Cost of the tuple>

Note

Shared cost function: A cost function in extension can be shared
by several cost functions with the same arity (and same domain
sizes) but different scopes. In order to do that, the cost function
to be shared must start by a negative scope size. Each shared
cost function implicitly receives an occurrence number starting
from 1 and incremented at each new shared definition. New
cost functions in extension can reuse some previously defined
shared cost functions in extension by using a negative num-
ber of tuples representing the occurrence number of the desired
shared cost function. Note that default costs should be the
same in the shared and new cost functions. Here is an exam-
ple of 4 variables with domain size 4 and one AllDifferent hard
constraint decomposed into 6 binary constraints.

– Shared CF used inside a small example in wcsp format:

AllDifferentDecomposedIntoBinaryConstraints 4 4 6 1

4 4 4 4

-2 0 1 0 4

0 0 1

1 1 1

2 2 1

3 3 1

2 0 2 0 -1

2 0 3 0 -1

2 1 2 0 -1

2 1 3 0 -1

2 2 3 0 -1

15

– Definition of a cost function in intension by replacing the default cost
value by -1 and by giving its keyword name and its K parameters

<Arity of the cost function>

<Index of the first variable in the scope of the cost function>

...

<Index of the last variable in the scope of the cost function>

-1

<keyword>

<parameter1>

...

<parameterK>

Possible keywords of cost functions defined in intension followed by their specific
parameters:

• >= cst delta to express soft binary constraint x ≥ y + cst with associated
cost function max((y + cst− x ≤ delta)?(y + cst− x) : UB, 0)

• > cst delta to express soft binary constraint x > y + cst with associated
cost function max((y + cst + 1− x ≤ delta)?(y + cst + 1− x) : UB, 0)

• <= cst delta to express soft binary constraint x ≤ y + cst with associated
cost function max((x− cst− y ≤ delta)?(x− cst− y) : UB, 0)

• < cst delta to express soft binary constraint x < y + cst with associated
cost function max((x− cst + 1− y ≤ delta)?(x− cst + 1− y) : UB, 0)

• = cst delta to express soft binary constraint x = y + cst with associated
cost function (|y + cst− x| ≤ delta)?|y + cst− x| : UB

• disj cstx csty penalty to express soft binary disjunctive constraint x ≥
y + csty ∨ y ≥ x + cstx with associated cost function (x ≥ y + csty ∨ y ≥
x + cstx)?0 : penalty

• sdisj cstx csty xinfty yinfty costx costy to express a special disjunctive
constraint with three implicit hard constraints x ≤ xinfty and y ≤ yinfty
and x < xinfty ∧ y < yinfty ⇒ (x ≥ y + csty ∨ y ≥ x + cstx) and an
additional cost function ((x = xinfty)?costx : 0) + ((y = yinfty)?costy :
0)

• Global cost functions using a flow-based propagator:

– salldiff var|dec|decbi cost to express a soft alldifferent constraint with
either variable-based (var keyword) or decomposition-based (dec and
decbi keywords) cost semantic with a given cost per violation (decbi
decomposes into a binary cost function complete network)

– sgcc var|dec|wdec cost nb values (value lower bound upper bound (shortage-
weight excess weight)?)∗ to express a soft global cardinality con-

straint with either variable-based (var keyword) or decomposition-
based (dec keyword) cost semantic with a given cost per violation
and for each value its lower and upper bound (if wdec then violation
cost depends on each value shortage or excess weights)

16

– ssame cost list size1 list size2 (variable index)∗ (variable index)∗ to
express a permutation constraint on two lists of variables of equal
size (implicit variable-based cost semantic)

– sregular var|edit cost nb states nb initial states (state)∗ nb final states
(state)∗ nb transitions (start state symbol value end state)∗ to ex-
press a soft regular constraint with either variable-based (var key-
word) or edit distance-based (edit keyword) cost semantic with a
given cost per violation followed by the definition of a deterministic
finite automaton with number of states, list of initial and final states,
and list of state transitions where symbols are domain values

• Global cost functions using a dynamic programming DAG-based propagator-
:

– sregulardp var cost nb states nb initial states (state)∗ nb final states
(state)∗ nb transitions (start state symbol value end state)∗ to ex-
press a soft regular constraint with a variable-based (var keyword)
cost semantic with a given cost per violation followed by the defini-
tion of a deterministic finite automaton with number of states, list
of initial and final states, and list of state transitions where symbols
are domain values

– sgrammar|sgrammardp var|weight cost nb symbols nb values start -
symbol nb rules ((0 terminal symbol value)|(1 nonterminal in nonterminal-
out left nonterminal out right)|(2 terminal symbol value weight)|(3

nonterminal in nonterminal out left nonterminal out right weight))∗
to express a soft/weighted grammar in Chomsky normal form

– samong|samongdp var cost lower bound upper bound nb values (value)∗
to express a soft among constraint to restrict the number of variables
taking their value into a given set of values

– salldiffdp var cost to express a soft alldifferent constraint with variable-
based (var keyword) cost semantic with a given cost per violation
(decomposes into samongdp cost functions)

– sgccdp var cost nb values (value lower bound upper bound)∗ to express
a soft global cardinality constraint with variable-based (var keyword)
cost semantic with a given cost per violation and for each value its
lower and upper bound (decomposes into samongdp cost functions)

– max|smaxdp defCost nbtuples (variable value cost)∗ to express a weighted
max cost function to find the maximum cost over a set of unary cost
functions associated to a set of variables (by default, defCost if un-
specified)

– MST|smstdp hard to express a spanning tree hard constraint where
each variable is assigned to its parent variable index in order to build
a spanning tree (the root being assigned to itself)

• Global cost functions using a cost function network-based propagator [1]:

17

– wregular nb states nb initial states (state and cost)∗ nb final states
(state and cost)∗ nb transitions (start state symbol value end state
cost)∗ to express a weighted regular constraint with weights on initial
states, final states, and transitions, followed by the definition of a
deterministic finite automaton with number of states, list of initial
and final states with their costs, and list of weighted state transitions
where symbols are domain values

– walldiff hard|lin|quad cost to express a soft alldifferent constraint as
a set of wamong hard constraint (hard keyword) or decomposition-
based (lin and quad keywords) cost semantic with a given cost per
violation

– wgcc hard|lin|quad cost nb values (value lower bound upper bound)∗
to express a soft global cardinality constraint as either a hard con-
straint (hard keyword) or with decomposition-based (lin and quad
keyword) cost semantic with a given cost per violation and for each
value its lower and upper bound

– wsame hard|lin|quad cost to express a permutation constraint on two
lists of variables of equal size (implicitly concatenated in the scope)
using implicit decomposition-based cost semantic

– wsamegcc hard|lin|quad cost nb values (value lower bound upper -
bound)∗ to express the combination of a soft global cardinality con-
straint and a permutation constraint

– wamong hard|lin|quad cost nb values (value)∗ lower bound upper -
bound to express a soft among constraint to restrict the number of
variables taking their value into a given set of values

– wvaramong hard cost nb values (value)∗ to express a hard among
constraint to restrict the number of variables taking their value into
a given set of values to be equal to the last variable in the scope

– woverlap hard|lin|quad cost comparator righthandside overlaps be-
tween two sequences of variables X, Y (i.e. set the fact that Xi and
Yi take the same value (not equal to zero))

– wsum hard|lin|quad cost comparator righthandside to express a soft
sum constraint with unit coefficients to test if the sum of a set of
variables matches with a given comparator and right-hand-side value

– wvarsum hard cost comparator to express a hard sum constraint to
restrict the sum to be comparator to the value of the last variable in
the scope

Let us note <> the comparator, K the right-hand-side value asso-
ciated to the comparator, and Sum the result of the sum over the
variables. For each comparator, the gap is defined according to the
distance as follows:

∗ if <> is == : gap = abs(K - Sum)

18

∗ if <> is <= : gap = max(0,Sum - K)

∗ if <> is < : gap = max(0,Sum - K - 1)

∗ if <> is != : gap = 1 if Sum != K and gap = 0 otherwise

∗ if <> is > : gap = max(0,K - Sum + 1);

∗ if <> is >= : gap = max(0,K - Sum);

Warning

The decomposition of wsum and wvarsum may use an exponential size
(sum of domain sizes).
list size1 and list size2 must be equal in ssame.
Cost functions defined in intention cannot be shared.

Note

More about network-based global cost functions can be found here https-
://metivier.users.greyc.fr/decomposable/

Examples:

• quadratic cost function x0 ∗ x1 in extension with variable domains {0, 1}
(equivalent to a soft clause ¬x0 ∨ ¬x1):

2 0 1 0 1 1 1 1

• simple arithmetic hard constraint x1 < x2:

2 1 2 -1 < 0 0

• hard temporal disjunction x1 ≥ x2 + 2 ∨ x2 ≥ x1 + 1:

2 1 2 -1 disj 1 2 UB

• soft alldifferent({x0,x1,x2,x3}):

4 0 1 2 3 -1 salldiff var 1

• soft gcc({x1,x2,x3,x4}) with each value v from 1 to 4 only appearing at
least v-1 and at most v+1 times:

4 1 2 3 4 -1 sgcc var 1 4 1 0 2 2 1 3 3 2 4 4 3 5

• soft same({x0,x1,x2,x3},{x4,x5,x6,x7}):

8 0 1 2 3 4 5 6 7 -1 ssame 1 4 4 0 1 2 3 4 5 6 7

• soft regular({x1,x2,x3,x4}) with DFA (3∗)+(4∗):

19

https://metivier.users.greyc.fr/decomposable/
https://metivier.users.greyc.fr/decomposable/

4 1 2 3 4 -1 sregular var 1 2 1 0 2 0 1 3 0 3 0 0 4 1 1 4 1

• soft grammar({x0,x1,x2,x3}) with hard cost (1000) producing well-formed
parenthesis expressions:

4 0 1 2 3 -1 sgrammardp var 1000 4 2 0 6 1 0 0 0 1 0 1 2 1 0 1 3 1 2 0 3 0 1 0 0 3 1

• soft among({x1,x2,x3,x4}) with hard cost (1000) if
∑4

i=1(xi ∈ {1, 2}) < 1

or
∑4

i=1(xi ∈ {1, 2}) > 3:

4 1 2 3 4 -1 samongdp var 1000 1 3 2 1 2

• soft max({x0,x1,x2,x3}) with cost equal to max3
i=0((xi! = i)?1000 : (4 −

i)):

4 0 1 2 3 -1 smaxdp 1000 4 0 0 4 1 1 3 2 2 2 3 3 1

• wregular({x0,x1,x2,x3}) with DFA (0(10)∗2∗):

4 0 1 2 3 -1 wregular 3 1 0 0 1 2 0 9 0 0 1 0 0 1 1 1 0 2 1 1 1 1 0 0 1 0 0 1 1 2 0 1 1 2 2 0 1 0 2 1 1 1 2

1

• wamong ({x1,x2,x3,x4}) with hard cost (1000) if
∑4

i=1(xi ∈ {1, 2}) < 1

or
∑4

i=1(xi ∈ {1, 2}) > 3:

4 1 2 3 4 -1 wamong hard 1000 2 1 2 1 3

• wvaramong ({x1,x2,x3,x4}) with hard cost (1000) if
∑3

i=1(xi ∈ {1, 2}) 6=
x4:

4 1 2 3 4 -1 wvaramong hard 1000 2 1 2

• woverlap({x1,x2,x3,x4}) with hard cost (1000) if
∑2

i=1(xi = xi+2) ≥ 1:

4 1 2 3 4 -1 woverlap hard 1000 < 1

• wsum ({x1,x2,x3,x4}) with hard cost (1000) if
∑4

i=1(xi) 6= 4:

4 1 2 3 4 -1 wsum hard 1000 == 4

• wvarsum ({x1,x2,x3,x4}) with hard cost (1000) if
∑3

i=1(xi) 6= x4:

4 1 2 3 4 -1 wvarsum hard 1000 ==

Latin Square 4 x 4 crisp CSP example in wcsp format:

20

latin4 16 4 8 1

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 0 1 2 3 -1 salldiff var 1

4 4 5 6 7 -1 salldiff var 1

4 8 9 10 11 -1 salldiff var 1

4 12 13 14 15 -1 salldiff var 1

4 0 4 8 12 -1 salldiff var 1

4 1 5 9 13 -1 salldiff var 1

4 2 6 10 14 -1 salldiff var 1

4 3 7 11 15 -1 salldiff var 1

4-queens binary weighted CSP example with random unary costs in wcsp
format:

4-WQUEENS 4 4 10 5

4 4 4 4

2 0 1 0 10

0 0 5

0 1 5

1 0 5

1 1 5

1 2 5

2 1 5

2 2 5

2 3 5

3 2 5

3 3 5

2 0 2 0 8

0 0 5

0 2 5

1 1 5

1 3 5

2 0 5

2 2 5

3 1 5

3 3 5

2 0 3 0 6

0 0 5

0 3 5

1 1 5

2 2 5

3 0 5

3 3 5

2 1 2 0 10

0 0 5

0 1 5

1 0 5

1 1 5

1 2 5

2 1 5

2 2 5

2 3 5

3 2 5

3 3 5

2 1 3 0 8

0 0 5

0 2 5

1 1 5

1 3 5

2 0 5

2 2 5

3 1 5

3 3 5

2 2 3 0 10

0 0 5

0 1 5

1 0 5

1 1 5

1 2 5

2 1 5

2 2 5

2 3 5

3 2 5

3 3 5

1 0 0 2

1 1

3 1

1 1 0 2

1 1

2 1

1 2 0 2

1 1

2 1

1 3 0 2

0 1

2 1

21

6.2 UAI and LG formats (.uai, .LG)

It is a simple text file format specified below to describe probabilistic graphical
model instances. The format is a generalization of the Ergo file format initially
developed by Noetic Systems Inc. for their Ergo software.

• Structure

A file in the UAI format consists of the following two parts, in that order:

<Preamble>

<Function tables>

The contents of each section (denoted < ... > above) are described in the
following:

• Preamble

The preamble starts with one line denoting the type of network. This will
be either BAYES (if the network is a Bayesian network) or MARKOV
(in case of a Markov network). This is followed by a line containing the
number of variables. The next line specifies each variable’s domain size,
one at a time, separated by whitespace (note that this implies an order
on the variables which will be used throughout the file).

The fourth line contains only one integer, denoting the number of functions
in the problem (conditional probability tables for Bayesian networks, gen-
eral factors for Markov networks). Then, one function per line, the scope
of each function is given as follows: The first integer in each line specifies
the size of the function’s scope, followed by the actual indexes of the vari-
ables in the scope. The order of this list is not restricted, except when
specifying a conditional probability table (CPT) in a Bayesian network,
where the child variable has to come last. Also note that variables are
indexed starting with 0.

For instance, a general function over variables 0, 5 and 11 would have this
entry:

3 0 5 11

A simple Markov network preamble with three variables and two functions
might for instance look like this:

MARKOV

3

2 2 3

2

2 0 1

3 0 1 2

22

The first line denotes the Markov network, the second line tells us the
problem consists of three variables, let’s refer to them as X, Y, and Z.
Their domain size is 2, 2, and 3 respectively (from the third line). Line
four specifies that there are 2 functions. The scope of the first function is
X,Y, while the second function is defined over X,Y,Z.

An example preamble for a Belief network over three variables (and there-
fore with three functions) might be:

BAYES

3

2 2 3

3

1 0

2 0 1

2 1 2

The first line signals a Bayesian network. This example has three variables,
let’s call them X, Y, and Z, with domain size 2, 2, and 3, respectively (from
lines two and three). Line four says that there are 3 functions (CPTs in
this case). The scope of the first function is given in line five as just X
(the probability P(X)), the second one is defined over X and Y (this is
(Y | X)). The third function, from line seven, is the CPT P(Z | Y). We
can therefore deduce that the joint probability for this problem factors as
P(X,Y,Z) = P(X).P(Y | X).P(Z | Y).

• Function tables

In this section each function is specified by giving its full table (i.e, spec-
ifying the function value for each tuple). The order of the functions is
identical to the one in which they were introduced in the preamble.

For each function table, first the number of entries is given (this should
be equal to the product of the domain sizes of the variables in the scope).
Then, one by one, separated by whitespace, the values for each assign-
ment to the variables in the function’s scope are enumerated. Tuples are
implicitly assumed in ascending order, with the last variable in the scope
as the ’least significant’.

To illustrate, we continue with our Bayesian network example from above,
let’s assume the following conditional probability tables:

X P (X)

0 0.436

1 0.564

X Y P (Y |X)

0 0 0.128

0 1 0.872

23

1 0 0.920

1 1 0.080

Y Z P (Z|Y)

0 0 0.210

0 1 0.333

0 2 0.457

1 0 0.811

1 1 0.000

1 2 0.189

The corresponding function tables in the file would then look like this:

2

0.436 0.564

4

0.128 0.872

0.920 0.080

6

0.210 0.333 0.457

0.811 0.000 0.189

(Note that line breaks and empty lines are effectively just whitespace,
exactly like plain spaces ” ”. They are used here to improve readability.)

In the LG format, probabilities are replaced by their logarithm.

• Summary

To sum up, a problem file consists of 2 sections: the preamble and the full
the function tables, the names and the labels.

For our Markov network example above, the full file could be:

MARKOV

3

2 2 3

2

2 0 1

3 0 1 2

4

4.000 2.400

1.000 0.000

12

2.2500 3.2500 3.7500

0.0000 0.0000 10.0000

1.8750 4.0000 3.3330

2.0000 2.0000 3.4000

Here is the full Bayesian network example from above:

24

BAYES

3

2 2 3

3

1 0

2 0 1

2 1 2

2

0.436 0.564

4

0.128 0.872

0.920 0.080

6

0.210 0.333 0.457

0.811 0.000 0.189

• Expressing evidence

Evidence is specified in a separate file. This file has the same name as
the original problems file but an added .evid extension at the end. For
instance, problem.uai will have evidence in problem.uai.evid.

The file simply starts with a line specifying the number of evidence vari-
ables. This is followed by the pairs of variable and value indexes for each
observed variable, one pair per line. The indexes correspond to the ones
implied by the original problem file.

If, for our above example, we want to specify that variable Y has been
observed as having its first value and Z with its second value, the file
example.uai.evid would contain the following:

2

1 0

2 1

6.3 Partial Weighted MaxSAT format

Max-SAT input format (.cnf)

The input file format for Max-SAT will be in DIMACS format:

c

c comments Max-SAT

c

p cnf 3 4

1 -2 0

-1 2 -3 0

-3 2 0

1 3 0

• The file can start with comments, that is lines beginning with the character
’c’.

• Right after the comments, there is the line ”p cnf nbvar nbclauses” indi-
cating that the instance is in CNF format; nbvar is the number of variables
appearing in the file; nbclauses is the exact number of clauses contained
in the file.

25

• Then the clauses follow. Each clause is a sequence of distinct non-null
numbers between -nbvar and nbvar ending with 0 on the same line. Pos-
itive numbers denote the corresponding variables. Negative numbers de-
note the negations of the corresponding variables.

Weighted Max-SAT input format (.wcnf)

In Weighted Max-SAT, the parameters line is ”p wcnf nbvar nbclauses”. The
weights of each clause will be identified by the first integer in each clause line.
The weight of each clause is an integer greater than or equal to 1.

Example of Weighted Max-SAT formula:

c

c comments Weighted Max-SAT

c

p wcnf 3 4

10 1 -2 0

3 -1 2 -3 0

8 -3 2 0

5 1 3 0

Partial Max-SAT input format (.wcnf)

In Partial Max-SAT, the parameters line is ”p wcnf nbvar nbclauses top”.
We associate a weight with each clause, which is the first integer in the clause.
Weights must be greater than or equal to 1. Hard clauses have weight top and
soft clauses have weight 1. We assume that top is a weight always greater than
the sum of the weights of violated soft clauses.

Example of Partial Max-SAT formula:

c

c comments Partial Max-SAT

c

p wcnf 4 5 15

15 1 -2 4 0

15 -1 -2 3 0

1 -2 -4 0

1 -3 2 0

1 1 3 0

Weighted Partial Max-SAT input format (.wcnf)

In Weighted Partial Max-SAT, the parameters line is ”p wcnf nbvar nbclauses
top”. We associate a weight with each clause, which is the first integer in the
clause. Weights must be greater than or equal to 1. Hard clauses have weight
top and soft clauses have a weight smaller than top. We assume that top is a
weight always greater than the sum of the weights of violated soft clauses.

Example of Weighted Partial Max-SAT formula:

c

c comments Weighted Partial Max-SAT

c

p wcnf 4 5 16

16 1 -2 4 0

16 -1 -2 3 0

8 -2 -4 0

4 -3 2 0

3 1 3 0

26

6.4 QPBO format (.qpbo)

In the quadratic pseudo-Boolean optimization (unconstrained quadratic pro-
gramming) format, the goal is to minimize or maximize the quadratic function:

X ′ ∗W ∗X =

N∑
i=1

N∑
j=1

Wij ∗Xi ∗Xj

where W is a symmetric squared N ×N matrix expressed by all its non-zero
half (i ≤ j) squared matrix coefficients, X is a vector of N binary variables with
domain values in {0, 1} or {1,−1}, and X ′ is the transposed vector of X.

Note that for two indices i 6= j, coefficient Wij = Wji (symmetric matrix)
and it appears twice in the previous sum. Note also that coefficients can be
positive or negative and are real float numbers. They are converted to fixed-
point real numbers by multiplying them by 10precision (see option -precision to
modify it, default value is 7). Infinite coefficients are forbidden.

Notice that depending on the sign of the number of variables in the first text
line, the domain of all variables is either {0, 1} or {1,−1}.

Warning! The encoding in Weighted CSP of variable domain {1,−1} asso-
ciates for each variable value the following index: value 1 has index 0 and value
-1 has index 1 in the solutions found by toulbar2. The encoding of variable
domain {0, 1} is direct.

Qpbo is a file text format:

• First line contains the number of variables N and the number of non-zero
coefficients M .

If N is negative then domain values are in {1,−1}, otherwise {0, 1}. If M
is negative then it will maximize the quadratic function, otherwise it will
minimize it.

• Followed by |M | lines where each text line contains three values separated
by spaces: position index i (integer belonging to [1, |N |]), position index
j (integer belonging to [1, |N |]), coefficient Wij (float number) such that
i ≤ j and Wij 6= 0

6.5 Linkage format (.pre)

See mendelsoft companion software at http://www.inra.fr/mia/T/MendelSoft
for pedigree correction. See also https://carlit.toulouse.inra.fr/cgi-bin/
awki.cgi/HaplotypeInference for haplotype inference in half-sib families.

7 Using it as a library

See toulbar2 reference manual which describes the libtb2.so C++ library API.

27

http://www.inra.fr/mia/T/MendelSoft
https://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/HaplotypeInference
https://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/HaplotypeInference

8 Using it from Python/Numberjack

See http://numberjack.ucc.ie.

References

[1] D Allouche, C Bessiere, P Boizumault, S de Givry, P Gutier-
rez, S Loudni, JP Métivier, and T Schiex. Decomposing global
cost functions. In Proc. of AAAI-12, Toronto, Canada, 2012.
http://www.inra.fr/mia/T/degivry/Ficolofo2012poster.pdf (poster).

[2] D Allouche, S de Givry, G Katsirelos, T Schiex, and M Zytnicki. Anytime
Hybrid Best-First Search with Tree Decomposition for Weighted CSP. In
Proc. of CP-15, pages 12–28, Cork, Ireland, 2015.

[3] David Allouche, Jessica Davies, Simon de Givry, George Katsirelos,
Thomas Schiex, Seydou Traoré, Isabelle André, Sophie Barbe, Steve Prest-
wich, and Barry O’Sullivan. Computational protein design as an optimiza-
tion problem. Artificial Intelligence, 212:59–79, 2014.

[4] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais.
Boosting systematic search by weighting constraints. In ECAI, volume 16,
page 146, 2004.

[5] M. Cooper, S. de Givry, M. Sanchez, T. Schiex, and M. Zytnicki. Virtual
arc consistency for weighted csp. In Proc. of AAAI-08, Chicago, IL, 2008.

[6] M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner.
Soft arc consistency revisited. Artificial Intelligence, 174(7–8):449–478,
2010.

[7] M C. Cooper. Reduction operations in fuzzy or valued constraint satisfac-
tion. Fuzzy Sets and Systems, 134(3):311–342, 2003.

[8] S de Givry, S Prestwich, and B O’Sullivan. Dead-End Elimination for
Weighted CSP. In Proc. of CP-13, pages 263–272, Uppsala, Sweden, 2013.

[9] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition
and Soft Local Consistency in Weighted CSP. In Proc. of AAAI-06, Boston,
MA, 2006.

[10] S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consis-
tency: Getting closer to full arc consistency in weighted CSPs. In Proc. of
IJCAI-05, pages 84–89, Edinburgh, Scotland, 2005.

[11] A. Favier, S. de Givry, and P. Jégou. Exploiting problem structure for
solution counting. In Proc. of CP-09, pages 335–343, Lisbon, Portugal,
2009.

28

http://numberjack.ucc.ie

[12] A Favier, S de Givry, A Legarra, and T Schiex. Pairwise de-
composition for combinatorial optimization in graphical models. In
Proc. of IJCAI-11, Barcelona, Spain, 2011. Video demonstration at
http://www.inra.fr/mia/T/degivry/Favier11.mov.

[13] W. D. Harvey and M. L. Ginsberg. Limited discrepency search. In Proc.
of IJCAI-95, Montréal, Canada, 1995.

[14] D Koller and N Friedman. Probabilistic graphical models: principles and
techniques. The MIT Press, 2009.

[15] J. Larrosa. Boosting search with variable elimination. In Principles and
Practice of Constraint Programming - CP 2000, volume 1894 of LNCS,
pages 291–305, Singapore, September 2000.

[16] J. Larrosa. On arc and node consistency in weighted CSP. In Proc.
AAAI’02, pages 48–53, Edmondton, (CA), 2002.

[17] J. Larrosa and T. Schiex. In the quest of the best form of local consistency
for weighted CSP. In Proc. of the 18th IJCAI, pages 239–244, Acapulco,
Mexico, August 2003.

[18] C. Lecoutre, L Säıs, S. Tabary, and V. Vidal. Reasoning from last conflict(s)
in constraint programming. Artificial Intelligence, 173:1592,1614, 2009.

[19] J. H. M. Lee and K. L. Leung. Towards Efficient Consistency Enforcement
for Global Constraints in Weighted Constraint Satisfaction. In Proceedings
of IJCAI’09, pages 559–565, 2009.

[20] J. H. M. Lee and K. L. Leung. A Stronger Consistency for Soft Global Con-
straints in Weighted Constraint Satisfaction. In Proceedings of AAAI’10,
pages 121–127, 2010.

[21] J. H. M. Lee and K. L. Leung. Consistency Techniques for Global Cost
Functions in Weighted Constraint Satisfaction. Journal of Artificial Intel-
ligence Research, 43:257–292, 2012.

[22] Bertrand Neveu, Gilles Trombettoni, and Fred Glover. Id walk: A candi-
date list strategy with a simple diversification device. In Proc. of CP, pages
423–437, Toronto, Canada, 2004.

[23] M Sanchez, D Allouche, S de Givry, and T Schiex. Russian doll search
with tree decomposition. In Proc. of IJCAI’09, Pasadena (CA), USA,
2009. http://www.inra.fr/mia/T/degivry/rdsbtd ijcai09 sdg.ppt.

[24] T. Schiex. Arc consistency for soft constraints. In Principles and Practice of
Constraint Programming - CP 2000, volume 1894 of LNCS, pages 411–424,
Singapore, September 2000.

[25] G. Verfaillie, M. Lemâıtre, and T. Schiex. Russian doll search. In Proc. of
AAAI-96, pages 181–187, Portland, OR, 1996.

29

	What is toulbar2
	How do I install it ?
	Using it as a black box
	Quick start
	Command line options
	General control
	Preprocessing
	Initial upper bounding
	Tree search algorithms and tree decomposition selection
	Node processing & bounding options
	Branching, variable and value ordering
	Console output
	File output
	Probability representation and numerical control
	Random problem generation

	Input File formats
	wcsp format (.wcsp file extension)
	UAI and LG formats (.uai, .LG)
	Partial Weighted MaxSAT format
	QPBO format (.qpbo)
	Linkage format (.pre)

	Using it as a library
	Using it from Python/Numberjack

