toulbar2

Generated by Doxygen 1.8.6

Mon Apr 25 2016 12:33:03

CONTENTS 1
Contents
1 Main Page 1
2 toulbar2 1
3 Module Documentation 4
3.1 Weighted Constraint Satisfaction Problem file format (wesp) 4
3.2 Variable and cost function modelingo 11
3.3 Solving cost function networkso 12
3.4 Output messages, verbosity options and debugging 13
3.5 Preprocessingtechniques 14
3.6 Variable and value search ordering heuristics 15
3.7 Soft arc consistency and problem reformulation o oL oL 16
3.8 Virtual Arc Consistency enforcing L Lo 17
3.9 NChbucketsort. e e e 18
3.10 Variable elimination e 19
3.11 Propagationloop e 20
3.12 Backitrack management L e 21
4 Class Documentation 22
4.1 WeightedCSP Class Reference 22
4.1.1 Detailed Description 26
4.1.2 Member Function Documentation 26
4.2 WeightedCSPSolver Class Reference i 32
4.2.1 Detailed Description e 33
4.2.2 Member Function Documentationo 33
1 Main Page
Weighted CSP Solver toulbar2
Copyright INRA
Source https://mulcyber.toulouse.inra.-
fr/projects/toulbar2/

See the README for more details.

toulbar2 can be used as a stand-alone solver reading various problem file formats (wcsp, uai, wenf, gpbo) or as a
C++ library.

This document describes the wcsp native file format and the toulbar2 C++ library API.

Note

2

Use cmake flag LIBTB2 to get the toulbar2 C++ library libtb2.so

toulbar2

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

https://mulcyber.toulouse.inra.fr/projects/toulbar2/
https://mulcyber.toulouse.inra.fr/projects/toulbar2/

2 CONTENTS

An exact solver for cost function networks
What is toulbar2?

toulbar2 is an open-source C++ solver for cost function networks. It solves various combinatorial optimization
problems. The constraints and objective function are factorized in local functions on discrete variables. Each
function returns a cost (a finite positive integer) for any assignment of its variables. Constraints are represented
as functions with costs in {0,k} where k is a large integer representing forbidden assignments. toulbar2 looks for a
non-forbidden assignment of all variables that minimizes the sum of all functions.

toulbar2 won several competitions on deterministic and probabilistic graphical models:

Max-CSP 2008 Competition CPAT08 (winner on 2-ARY-EXT and N-ARY-EXT)

» Probabilistic Inference Evaluation UAT 2008 (winner on several MPE tasks, inra entries)

2010 UAI APPROXIMATE INFERENCE CHALLENGE UAI 2010 (winner on 1200-second MPE task)

» The Probabilistic Inference Challenge PTC 2011 (second place by ficolofo on 1-hour MAP task)

UAI 2014 Inference Competition UAT 2014 (winner on all MAP task categories, see Proteus, Robin, and
IncTb entries)

Download

http://mulcyber.toulouse.inra.fr/projects/toulbar2/

Latest src/debian/windows x86_64 releases:

2016: src0_9_8/deb0_9_8/win0_9_ 8 with hybrid best-first search and more soft global cost functions
* 2015: src0_9_7/deb0_9_7/win0_9_7 with local search INCOP solver after preprocessing

* 2014: src0_9_6/deb0_9_6/win0_9_6 with extra variable ordering heuristics and dominance pruning
rules

¢ 2012: src0_9_5/deb0_9_5/win0_9_5 with soft global decomposable cost functions
e 2011: src0_9_4/deb0_9_4/win0_9_4 with more preprocessing techniques

* 2010: src0_9_3/deb0_9_3/win0_9_ 3 with soft global cost functions

Installation

Library needed:

* libgmp-dev
* libboost-dev

* libboost-graph-dev
Optional libraries:
* libxml2-dev
GNU C++ Symbols to be defined if using Linux Eclipse/CDT IDE (no value needed):

« LINUX
+ LONGLONG_COST

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

http://www.cril.univ-artois.fr/CPAI08/
http://graphmod.ics.uci.edu/uai08/Evaluation/Report
http://www.cs.huji.ac.il/project/UAI10/summary.php
http://www.cs.huji.ac.il/project/PASCAL/board.php
http://www.hlt.utdallas.edu/~vgogate/uai14-competition/leaders.html
http://mulcyber.toulouse.inra.fr/projects/toulbar2/
https://mulcyber.toulouse.inra.fr/frs/download.php/1455/toulbar2.0.9.8.0-Release-sources.tar.gz
https://mulcyber.toulouse.inra.fr/frs/download.php/1448/toulbar2.0.9.8.0-Release-x86_64.deb
https://mulcyber.toulouse.inra.fr/frs/download.php/1446/toulbar2.0.9.8.0-Release-x86_64.exe
https://mulcyber.toulouse.inra.fr/frs/download.php/1380/toulbar2.0.9.7.0-Release-sources.tar.gz
https://mulcyber.toulouse.inra.fr/frs/download.php/1371/toulbar2.0.9.7.0-Release-x86_64.deb
https://mulcyber.toulouse.inra.fr/frs/download.php/1374/toulbar2.0.9.7.0-Release-x86_64.exe
http://imagine.enpc.fr/~neveub/incop/incoppresentation.html
https://mulcyber.toulouse.inra.fr/frs/download.php/1292/toulbar2.0.9.6.0-Release-sources.tar.gz
https://mulcyber.toulouse.inra.fr/frs/download.php/1281/toulbar2.0.9.6.0-Release-i686.deb
https://mulcyber.toulouse.inra.fr/frs/download.php/1279/toulbar2.0.9.6.0-Release-i686.exe
https://mulcyber.toulouse.inra.fr/frs/download.php/1142/toulbar2.0.9.5.0-Release-sources.tar.gz
https://mulcyber.toulouse.inra.fr/frs/download.php/1134/toulbar2.0.9.5.0-Release-x86_64.deb
https://mulcyber.toulouse.inra.fr/frs/download.php/1129/toulbar2.0.9.5.0-Release-i686.exe
https://mulcyber.toulouse.inra.fr/frs/download.php/1019/toulbar2.0.9.4.0-Release-sources.tar.gz
https://mulcyber.toulouse.inra.fr/frs/download.php/1008/toulbar2.0.9.4.0-Release-i686.deb
https://mulcyber.toulouse.inra.fr/frs/download.php/1006/toulbar2.0.9.4.0-Release-i686.exe
https://mulcyber.toulouse.inra.fr/frs/download.php/975/toulbar2.0.9.3.0-Release-sources.tar.gz
https://mulcyber.toulouse.inra.fr/frs/download.php/964/toulbar2.0.9.3.0-Release-i686.deb
https://mulcyber.toulouse.inra.fr/frs/download.php/962/toulbar2.0.9.3.0-Release-i686.exe

2 toulbar2 3

WIDE_STRING
+ LONGDOUBLE_PROB

NARYCHAR
+ WCSPFORMATONLY

Commands for compiling toulbar2 on Linux in directory toulbar2/src without cmake:

bash

echo ’#define Toulbar_VERSION "0.9.8"’ > ToulbarVersion.hpp

g++ —o toulbar2 -I. tb2*.cpp incop/#*.cpp ToulbarVersion.cpp -03 -DNDEBUG -DLINUX \
—~DLONGLONG_COST -DWIDE_STRING -DLONGDOUBLE_PROB -DNARYCHAR -DWCSPFORMATONLY -lgmp -static

Authors
toulbar2 was originally developped by Toulouse (INRA MIAT) and Barcelona (UPC, IlIA-CSIC) teams, hence the
name of the solver.

Additional contributions by:

» The Chinese University of Hong Kong and Caen University, France (GREYC) for global cost functions
» Marseille University, France (LSIS) for tree decomposition heuristics
» Ecole des Ponts ParisTech, France (CERMICS/LIGM) for INCOP local search solver

+ University College Cork, Ireland (Insight) for a Python interface in Numbe rJack and a portfolio dedicated to
UAI graphical models Proteus

+ Artois University, France (CRIL) for an XCSP 2.1 format reader of CSP and WCSP instances

Citing

Please use one of the following references for citing toulbar2:

Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization Barry Hurley, Barry
O’Sullivan, David Allouche, George Katsirelos, Thomas Schiex, Matthias Zytnicki, Simon de Givry Constraints,
22p, 2016

Soft arc consistency revisited M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner Artificial
Intelligence, 174(7-8):449-478, 2010

What are the algorithms inside toulbar2?

+ Soft arc consistencies (NC, AC, DAC, FDAC) In the quest of the best form of local consistency for Weighted
CSP J. Larrosa & T. Schiex In Proc. of IUCAI-03. Acapulco, Mexico, 2003

+ Soft existential arc consistency (EDAC) Existential arc consistency: Getting closer to full arc consistency in
weighted csps S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa In Proc. of IJCAI-05, Edinburgh, Scotland,
2005

 Depth-first Branch and Bound exploiting a tree decomposition (BTD) Exploiting Tree Decomposition and Soft
Local Consistency in Weighted CSP S. de Givry, T. Schiex, and G. Verfaillie In Proc. of AAAI-06, Boston, MA,
2006

« Virtual arc consistency (VAC) Virtual arc consistency for weighted csp M. Cooper, S. de Givry, M. Sanchez,
T. Schiex, and M. Zytnicki In Proc. of AAAI-08, Chicago, IL, 2008

+ Soft generalized arc consistencies (GAC, FDGAC) Towards Efficient Consistency Enforcement for Global
Constraints in Weighted Constraint Satisfaction J. H. M. Lee and K. L. Leung In Proc. of IJCAI-09, Los
Angeles, USA, 2010

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

http://imagine.enpc.fr/~neveub/incop/incoppresentation.html
http://numberjack.ucc.ie/
https://github.com/9thbit/uai-proteus

4 CONTENTS

* Russian doll search exploiting a tree decomposition (RDS-BTD) Russian doll search with tree decomposition
M Sanchez, D Allouche, S de Givry, and T Schiex In Proc. of IJCAI'09, Pasadena (CA), USA, 2009

« Soft bounds arc consistency (BAC) Bounds Arc Consistency for Weighted CSPs M. Zytnicki, C. Gaspin, S.
de Givry, and T. Schiex Journal of Artificial Intelligence Research, 35:593-621, 2009

» Counting solutions in satisfaction (#BTD, Approx_::BTD) Exploiting problem structure for solution counting A.
Favier, S. de Givry, and P. Jégou In Proc. of CP-09, Lisbon, Portugal, 2009

« Soft existential generalized arc consistency (EDGAC) A Stronger Consistency for Soft Global Constraints in
Weighted Constraint Satisfaction J. H. M. Lee and K. L. Leung In Proc. of AAAI-10, Boston, MA, 2010

» Preprocessing techniques (combines variable elimination and cost function decomposition) Pairwise decom-
position for combinatorial optimization in graphical models A Favier, S de Givry, A Legarra, and T Schiex In
Proc. of IUJCAI-11, Barcelona, Spain, 2011

» Decomposable global cost functions (wregular, wamong, wsum) Decomposing global cost functions D Al-
louche, C Bessiere, P Boizumault, S de Givry, P Gutierrez, S Loudni, JP Métivier, and T Schiex In Proc. of
AAAI-12, Toronto, Canada, 2012

+ Pruning by dominance (DEE) Dead-End Elimination for Weighted CSP S de Givry, S Prestwich, and B
O’Sullivan In Proc. of CP-13, pages 263-272, Uppsala, Sweden, 2013

» Hybrid best-first search exploiting a tree decomposition (HBFS) Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP D Allouche, S de Givry, G Katsirelos, T Schiex, and M Zytnicki In Proc. of
CP-15, Cork, Ireland, 2015

Copyright (C) 2006-2016, INRA. toulbar2 is currently maintained by Simon de Givry, INRA - MIAT, Toulouse, France
(degivry@toulouse.inra. fr)

3 Module Documentation

3.1 Weighted Constraint Satisfaction Problem file format (wcsp)

It is a text format composed of a list of numerical and string terms separated by spaces. Instead of using names
for making reference to variables, variable indexes are employed. The same for domain values. All indexes start at
zero.

Cost functions can be defined in intention (see below) or in extension, by their list of tuples. A default cost value is
defined per function in order to reduce the size of the list. Only tuples with a different cost value should be given
(not mandatory). All the cost values must be positive. The arity of a cost function in extension may be equal to zero.
In this case, there is no tuples and the default cost value is added to the cost of any solution. This can be used to
represent a global lower bound constant of the problem.

The wesp file format is composed of three parts: a problem header, the list of variable domain sizes, and the list of
cost functions.

+ Header definition for a given problem:

<Problem name>

<Number of variables (N)>

<Maximum domain size>

<Number of cost functions>

<Initial global upper bound of the problem (UB)>

The goal is to find an assignment of all the variables with minimum total cost, strictly lower than UB. Tuples
with a cost greater than or equal to UB are forbidden (hard constraint).

Definition of domain sizes
<Domain size of variable with index 0>

<Domain size of variable with index N - 1>

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

mailto:degivry@toulouse.inra.fr

3.1 Weighted Constraint Satisfaction Problem file format (wcsp) 5

Note

domain values range from zero to size-1
a negative domain size is interpreted as a variable with an interval domain in [0, —size — 1]

Warning

variables with interval domains are restricted to arithmetic and disjunctive cost functions in intention
(see below)

« General definition of cost functions

— Definition of a cost function in extension

<Arity of the cost function>
<Index of the first variable in the scope of the cost function>

<Index of the last variable in the scope of the cost function>
<Default cost wvalue>
<Number of tuples with a cost different than the default cost>

followed by for every tuple with a cost different than the default cost:

<Index of the value assigned to the first variable in the scope>

<Index of the value assigned to the last variable in the scope>
<Cost of the tuple>

Note

Shared cost function: A cost function in extension can be shared by several cost functions with
the same arity (and same domain sizes) but different scopes. In order to do that, the cost function
to be shared must start by a negative scope size. Each shared cost function implicitly receives
an occurrence number starting from 1 and incremented at each new shared definition. New cost
functions in extension can reuse some previously defined shared cost functions in extension by
using a negative number of tuples representing the occurrence number of the desired shared cost
function. Note that default costs should be the same in the shared and new cost functions. Here
is an example of 4 variables with domain size 4 and one AllDifferent hard constraint decomposed
into 6 binary constraints.

— Shared CF used inside a small example in wcsp format:

AllDifferentDecomposedIntoBinaryConstraints 4 4 6 1
4 4 4 4
-2 010 4

-1
-1
-1
-1
-1

NN WND RO
NHRPFPOOWNRO
W W W=

oo ooo

— Definition of a cost function in intension by replacing the default cost value by -1 and by giving its keyword
name and its K parameters

<Arity of the cost function>
<Index of the first variable in the scope of the cost function>

<Index of the last variable in the scope of the cost function>
-1
<keyword>

<parameterl>

<parameterK>

Possible keywords of cost functions defined in intension followed by their specific parameters:

+ >= cst delta to express soft binary constraint x > y + cst with associated cost function max((y + cst —x <
delta)?(y+cst —x) : UB,0)

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

CONTENTS

> cst delta to express soft binary constraint x > y -+ cst with associated cost function max((y+cst +1—x <
delta)?(y+cst+1—x):UB,0)

* <= cst delta to express soft binary constraint x < y+ cst with associated cost function max((x — cst —y <
delta)?(x —cst —y) : UB,0)

+ < cstdelta to express soft binary constraint x <y + cst with associated cost function max((x —est +1—y <
delta)?(x —cst+1—y) : UB,0)

« = cst delta to express soft binary constraint x = y + cst with associated cost function (|y 4 cst — x| <
delta)?y+cst —x|: UB

+ disj cstx csty penalty to express soft binary disjunctive constraint x > y+csty Vy > x 4 cstx with associated
cost function (x > y+cstyVy > x+cstx)?0 : penalty

« sdisj cstx csty xinfty yinfty costx costy to express a special disjunctive constraint with three implicit hard
constraints x < xinfty and y < yinfty and x < xinfty Ay < yinfty = (x > y+cstyVy > x+cstx) and an
additional cost function ((x = xinfty)?costx : 0) + ((y = yinfty)?costy : 0)

+ Global cost functions using a flow-based propagator:

— salldiff var|dec|decbi costto express a soft alldifferent constraint with either variable-based (var keyword)
or decomposition-based (dec and decbi keywords) cost semantic with a given cost per violation (decbi
decomposes into a binary cost function complete network)

— sgcc var|declwdec cost nb_values (value lower bound upper_bound (shortage weight excess_-
weight)?)* to express a soft global cardinality constraint with either variable-based (var keyword) or
decomposition-based (dec keyword) cost semantic with a given cost per violation and for each value its
lower and upper bound (if wdec then violation cost depends on each value shortage or excess weights)

— ssame cost list_size1 list_size2 (variable_index)* (variable_index)* to express a permutation constraint
on two lists of variables of equal size (implicit variable-based cost semantic)

— sregular var|edit cost nb_states nb_initial_states (state)x nb_final_states (state)x nb_transitions (start-
_state symbol_value end_state)x to express a soft regular constraint with either variable-based (var
keyword) or edit distance-based (edit keyword) cost semantic with a given cost per violation followed by
the definition of a deterministic finite automaton with number of states, list of initial and final states, and
list of state transitions where symbols are domain values

+ Global cost functions using a dynamic programming DAG-based propagator:

— sregulardp var cost nb_states nb_initial_states (state)x nb_final_states (state)+ nb_transitions (start_-
state symbol_value end_state)* to express a soft regular constraint with a variable-based (var keyword)
cost semantic with a given cost per violation followed by the definition of a deterministic finite automaton
with number of states, list of initial and final states, and list of state transitions where symbols are domain
values

— sgrammar|sgrammardp var|weight cost nb_symbols nb_values start symbol nb_rules ((0 terminal-
_symbol value)|(1 nonterminal_in nonterminal _out left nonterminal_out right)|(2 terminal_symbol
value weight)|(3 nonterminal_in nonterminal_out_left nonterminal_out_right weight))* to express a
soft/weighted grammar in Chomsky normal form

— samong|samongdp var cost lower_bound upper_bound nb_values (value)x to express a soft among
constraint to restrict the number of variables taking their value into a given set of values

— salldiffdp var costto express a soft alldifferent constraint with variable-based (var keyword) cost semantic
with a given cost per violation (decomposes into samongdp cost functions)

— sgccdp var cost nb_values (value lower_bound upper_bound)x to express a soft global cardinality con-
straint with variable-based (var keyword) cost semantic with a given cost per violation and for each value
its lower and upper bound (decomposes into samongdp cost functions)

— max|smaxdp defCost nbtuples (variable value cost)x to express a weighted max cost function to find the
maximum cost over a set of unary cost functions associated to a set of variables (by default, defCost if
unspecified)

— MST|smstdp hard to express a spanning tree hard constraint where each variable is assigned to its
parent variable index in order to build a spanning tree (the root being assigned to itself)

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

3.1 Weighted Constraint Satisfaction Problem file format (wcsp) 7

+ Global cost functions using a cost function network-based propagator:

Warning

wregular nb_states nb_initial_states (state and cost)x nb_final states (state and cost)x nb_transitions
(start_state symbol _value end_state cost)x to express a weighted regular constraint with weights on
initial states, final states, and transitions, followed by the definition of a deterministic finite automaton
with number of states, list of initial and final states with their costs, and list of weighted state transitions
where symbols are domain values

walldiff hard|lin|quad cost to express a soft alldifferent constraint as a set of wamong hard constraint
(hard keyword) or decomposition-based (/in and quad keywords) cost semantic with a given cost per
violation

wgcc hard|lin|quad cost nb_values (value lower_bound upper_bound)x to express a soft global cardi-
nality constraint as either a hard constraint (hard keyword) or with decomposition-based (/in and quad
keyword) cost semantic with a given cost per violation and for each value its lower and upper bound

wsame hard|lin|quad cost to express a permutation constraint on two lists of variables of equal size
(implicitly concatenated in the scope) using implicit decomposition-based cost semantic

wsamegcc hard|lin|quad cost nb_values (value lower_bound upper_bound) to express the combination
of a soft global cardinality constraint and a permutation constraint

wamong hard|lin|quad cost nb_values (value)x lower_bound upper_bound to express a soft among
constraint to restrict the number of variables taking their value into a given set of values

wvaramong hard cost nb_values (value)x to express a hard among constraint to restrict the number of
variables taking their value into a given set of values to be equal to the last variable in the scope

woverlap hard|lin|quad cost comparator righthandside overlaps between two sequences of variables X,
Y (i.e. set the fact that Xi and Yi take the same value (not equal to zero))

wsum hard|lin|quad cost comparator righthandside to express a soft sum constraint with unit coefficients
to test if the sum of a set of variables matches with a given comparator and right-hand-side value

wvarsum hard cost comparator to express a hard sum constraint to restrict the sum to be comparator to
the value of the last variable in the scope
Let us note <> the comparator, K the right-hand-side value associated to the comparator, and Sum the
result of the sum over the variables. For each comparator, the gap is defined according to the distance
as follows:

« if <> is ==:gap = abs(K - Sum)

= if <> is <=:gap = max(0,Sum - K)

= if <>is < :gap = max(0,Sum - K- 1)

« if <>isl=:gap=1if Sum = Kand gap = 0 otherwise

= if <>is > :gap =max(0,K - Sum + 1);

= if <> is >=: gap = max(0,K - Sum);

The decomposition of wsum and wvarsum may use an exponential size (sum of domain sizes).
list_size1 and list_size2 must be equal in ssame.
Cost functions defined in intention cannot be shared.

Note

More
grey

Examples:

about network-based global cost functions can be found here https://metivier.users.-
c.fr/decomposable/

» quadratic cost function x0 x x1 in extension with variable domains {0, 1} (equivalent to a soft clause —x0V

—x1):

201

01111

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

https://metivier.users.greyc.fr/decomposable/
https://metivier.users.greyc.fr/decomposable/

CONTENTS

simple arithmetic hard constraint x1 < x2:

212-1<00

hard temporal disjunction x1 > x2+4+2Vx2 > x1 +1:

212 -1disj 1 2 UB

soft_alldifferent({x0,x1,x2,x3}):

401 2 3 -1 salldiff var 1

soft_gcc({x1,x2,x3,x4}) with each value v from 1 to 4 only appearing at least v-1 and at most v+1 times:
41234 -1sgccvar 1 4102213324435

soft_same({x0,x1,x2,x3},{x4,x5,x6,x7}):

801234567 -1ssame 1 44012345%67

soft_regular({x1,x2,x3,x4}) with DFA (3x)+(4x):

412 34 -1 sregular var 1 21 02 013030041141

soft_grammar({x0,x1,x2,x3}) with hard cost (1000) producing well-formed parenthesis expressions:
4 01 2 3 -1 sgrammardp var 1000 4 2 0 61 0001 01210131203010031
soft_among({x1,x2,x3,x4}) with hard cost (1000) if ¥+, (x; € {1,2}) < 1or ¥ (x; € {1,2}) > 3:
4 1 2 3 4 -1 samongdp var 1000 1 3 2 1 2

soft max({x0,x1,x2,x3}) with cost equal to max>_((x;! = #)21000 : (4 —i)):

40123 -1 smaxdp 1000 4 0 04113222331

wregular({x0,x1,x2,x3}) with DFA (0(10)*2x):

40123 -1lwregular 31 0012090010011 1021111001001120112201021112
1

wamong ({x1,x2,x3,x4}) with hard cost (1000) if Z?zl(xi e{l,2h)<lor Zj‘:l(xl- e{1,2}) > 3:
4 1 2 3 4 -1 wamong hard 1000 2 1 2 1 3

wvaramong ({x1,x2,x3,x4}) with hard cost (1000) if Z?zl(x,- €{1,2}) # x4

41 2 3 4 -1 wvaramong hard 1000 2 1 2

woverlap({x1,x2,x3,x4}) with hard cost (1000) if Ziz:l(x,- =xi40) > L

4 1 2 3 4 -1 woverlap hard 1000 < 1

wsum ({x1,x2,x3,x4}) with hard cost (1000) if Y'#_, (x;) # 4:

4 1 2 3 4 -1 wsum hard 1000 == 4

wvarsum ({x1,x2,x3,x4}) with hard cost (1000) if ¥'3_, (x;) # x4:

4 1 2 3 4 -1 wvarsum hard 1000 ==

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

3.1 Weighted Constraint Satisfaction Problem file format (wcsp)

Latin Square 4 x 4 crisp CSP example in wecsp format:

latind 16 4 8 1

444 4444444444444
4012 3 -1 salldiff var 1

4 45 6 7 -1 salldiff var 1

4 8 9 10 11 -1 salldiff var 1

4 12 13 14 15 -1 salldiff var 1
4 0 4 8 12 -1 salldiff var 1
415 9 13 -1 salldiff var 1

4 2 6 10 14 -1 salldiff var 1

4 3 7 11 15 -1 salldiff var 1

4-queens binary weighted CSP example with random unary costs in wcsp format:

4-WQUEENS 4 4 10 5
4 4 4 4
201010
005
015
105
115
125
215
225
235
325
335
20208
005
025
115
135
205
225
315
335
20306
005
035
115
225
305
335
212010
005
015
105
115
125
215
225
235
325
335
21308
005
025
115
135
205
225
315
335

2 2 3010
005
015
105
115
125
215
225
235
325
335
1002
11

31
1102
11

21
1202
11

21

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

10

CONTENTS

N o R
=W

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

3.2 Variable and cost function modeling 11

3.2 Variable and cost function modeling

Modeling a Weighted CSP consists in creating variables and cost functions.

Domains of variables can be of two different types:

» enumerated domain allowing direct access to each value (array) and iteration on current domain in times
proportional to the current number of values (double-linked list)

* interval domain represented by a lower value and an upper value only (useful for large domains)

Warning

Current implementation of toulbar2 has limited modeling and solving facilities for interval domains. There is no
cost functions accepting both interval and enumerated variables for the moment, which means all the variables
should have the same type.

Cost functions can be defined in extension (table or maps) or having a specific semantic.

Cost functions in extension depend on their arity:

+ unary cost function (directly associated to an enumerated variable)
* binary and ternary cost functions (table of costs)

 n-ary cost functions (n >= 4) defined by a list of tuples with associated costs and a default cost for missing
tuples (allows for a compact representation)

Cost functions having a specific semantic (see Weighted Constraint Satisfaction Problem file format (wcsp)) are:

+ simple arithmetic and scheduling (temporal disjunction) cost functions on interval variables

« global cost functions (eg soft alldifferent, soft global cardinality constraint, soft same, soft regular, etc) with
three different propagator keywords:

— flow propagator based on flow algorithms with "s" prefix in the keyword (salldiff, sgcc, ssame, sregular)

— DAG propagator based on dynamic programming algorithms with "s" prefix and "dp" postfix (samongdp,
salldiffdp, sgcedp, sregulardp, sgrammardp, smstdp, smaxdp)

— network propagator based on cost function network decomposition with "w" prefix (wsum, wvarsum,
walldiff, wgcc, wsame, wsamegcc, wregular, wamong, wvaramong, woverlap)

Note

The default semantics (using var keyword) of monolithic (flow and DAG-based propagators) global cost func-
tions is to count the number of variables to change in order to restore consistency and to multiply it by the
basecost. Other particular semantics may be used in conjunction with the flow-based propagator

The semantics of the network-based propagator approach is either a hard constraint ("hard" keyword) or a
soft constraint by multiplying the number of changes by the basecost ("lin" or "var" keyword) or by multiplying
the square value of the number of changes by the basecost ("quad" keyword)

A decomposable version exists for each monolithic global cost function, except grammar and MST. The de-
composable ones may propagate less than their monolithic counterpart and they introduce extra variables but
they can be much faster in practice

Warning

Each global cost function may have less than three propagators implemented

Current implementation of toulbar2 has limited solving facilities for monolithic global cost functions (no BTD-
like methods nor variable elimination)

Current implementation of toulbar2 disallows global cost functions with less than or equal to three variables in
their scope (use cost functions in extension instead)

Before modeling the problem using make and post, call ::tb2init method to initialize toulbar2 global variables
After modeling the problem using make and post, call WeightedCSP::sortConstraints method to initialize cor-
rectly the model before solving it

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

12 CONTENTS

3.3 Solving cost function networks

After creating a Weighted CSP, it can be solved using a local search method INCOP (see WeightedCSPSolver-
::narycsp) and/or an exact B&B search method (see WeightedCSPSolver::solve).

Various options of the solving methods are controlled by ::Toulbar2 static class members (see files src/tb2types.hpp
and src/tb2main.cpp).

A brief code example reading a wcsp problem given as a single command-line parameter and solving it:

#include "toulbar2lib.hpp"
#include <string.h>

#include <stdio.h>

finclude <stdlib.h>

#include <unistd.h>

int main(int argc, char *xargv) {

tb2init (); // must be call before setting specific ToulBar2 options and creating a model

// Create a solver object
WeightedCSPSolver xsolver =
WeightedCSPSolver: :makeWeightedCSPSolver (MAX_COST) ;

// Read a problem file in wcsp format
solver->read_wcsp (argv[1l]);

ToulBar2::verbose = -1; // change to 0 or higher values to see more trace information

// Uncomment if solved using INCOP local search followed by a partial Limited Discrepancy Search with a
maximum discrepancy of one

// ToulBar2::incop_cmd = "0 1 3 idwa 100000 cv v 0 200 1 0 0O";

// ToulBar2::1ds = -1; // remove it or change to a positive value then the search continues by a
complete B&B search method

(solver->solve()) {

// show (sub-)optimal solution
vector<Value> sol;

Cost ub = solver->getSolution(sol);

cout << "Best solution found cost: " << ub << endl;
cout << "Best solution found:";
f (unsigned int i=0; i<sol.size(); 1++) cout << ((i>0)?2",":"") << " x" << i << " = " << sol[i];

cout << endl;
}oelse |
cout << "No solution found!" << endl;
}

delete solver;

See Also

another code example in src/toulbar2test.cpp

Warning

variable domains must start at zero, otherwise recompile libtb2.so without flag WCSPFORMATONLY

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

34

Output messages, verbosity options and debugging 13

3.4

Output messages, verbosity options and debugging

Depending on verbosity level given as option "-v=level", t oulbar?2 will output:

* (level=0, no verbosity) default output mode: shows version number, number of variables and cost functions
read in the problem file, number of unassigned variables and cost functions after preprocessing, problem
upper and lower bounds after preprocessing. Outputs current best solution cost found, ends by giving the
optimum or "No solution". Last output line should always be: "end."

* (level=-1, no verbosity) restricted output mode: do not print current best solution cost found

. (level=1) shows also search choices ("["search_depth problem_lower_bound problem_upper_bound sum_-
of_current_domain_sizes'"] Try" variable_index operator value) with operator being assignment ("=="), value
removal ("!="), domain splitting ("<=" or ">=", also showing EAC value in parenthesis)

. (level=2) shows also current domains (variable_index list_of current_domain_values "' number_of_cost-
_functions (see approximate degree in Variable elimination) "/* weighted_degree list_of unary costs "s:"
support_value) before each search choice and reports problem lower bound increases, NC bucket sort data
(see NC bucket sort), and basic operations on domains of variables

3. (level=3) reports also basic arc EPT operations on cost functions (see Soft arc consistency and problem

reformulation)

4. (level=4) shows also current list of cost functions for each variable and reports more details on arc EPT

operations (showing all changes in cost functions)

5. (level=5) reports more details on cost functions defined in extension giving their content (cost table by first

increasing values in the current domain of the last variable in the scope)

For debugging purposes, another option "-Z=level" allows to monitor the search:

1

. (level 1) shows current search depth (number of search choices from the root of the search tree) and reports
statistics on nogoods for BTD-like methods

2. (level 2) idem

3. (level 3) also saves current problem into a file before each search choice

Note

toulbar2, compiled in debug mode, can be more verbose and it checks a lot of assertions (pre/post condi-
tions in the code)
toulbar?2 will output an help message giving available options if run without any parameters

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

14

CONTENTS

3.5

Preprocessing techniques

Depending on toulbar2 options, the sequence of preprocessing techniques applied before the search is:

Note

. i-bounded variable elimination with user-defined i bound

. pairwise decomposition of cost functions (binary cost functions are implicitly decomposed by soft AC and

empty cost function removals)

MinSumDiffusion propagation (see VAC)

. projects&substracts n-ary cost functions in extension on all the binary cost functions inside their scope (3 <

n < max, see toulbar2 options)
functional variable elimination (see Variable elimination)

projects&substracts ternary cost functions in extension on their three binary cost functions inside their scope
(before that, extends the existing binary cost functions to the ternary cost function and applies pairwise
decomposition)

. creates new ternary cost functions for all triangles (ie occurences of three binary cost functions xy, yz, zx)

removes empty cost functions while repeating #1 and #2 until no new cost functions can be removed

the propagation loop is called after each preprocessing technique (see WCSP::propagate)

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

3.6 Variable and value search ordering heuristics 15

3.6 Variable and value search ordering heuristics

See Also

Boosting Systematic Search by Weighting Constraints . Frederic Boussemart, Fred Hemery, Christophe
Lecoutre, Lakhdar Sais. Proc. of ECAI 2004, pages 146-150. Valencia, Spain, 2004.

Last Conflict Based Reasoning . Christophe Lecoutre, Lakhdar Sais, Sebastien Tabary, Vincent Vidal. Proc.
of ECAI 2006, pages 133-137. Trentino, ltaly, 2006.

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

16 CONTENTS

3.7 Soft arc consistency and problem reformulation

Soft arc consistency is an incremental lower bound technique for optimization problems. lIts goal is to move costs
from high-order (typically arity two or three) cost functions towards the problem lower bound and unary cost func-
tions. This is achieved by applying iteratively local equivalence-preserving problem transformations (EPTs) until
some terminating conditions are met.

Note

eg an EPT can move costs between a binary cost function and a unary cost function such that the sum of the
two functions remains the same for any complete assignment.

See Also

Arc consistency for Soft Constraints. T. Schiex. Proc. of CP’2000. Singapour, 2000.

Note

Soft Arc Consistency in toulbar2 is limited to binary and ternary and some global cost functions (eg alldifferent,
gcc, regular, same). Other n-ary cost functions are delayed for propagation until their number of unassigned
variables is three or less.

See Also

Towards Efficient Consistency Enforcement for Global Constraints in Weighted Constraint Satisfaction. Jimmy
Ho-Man Lee, Ka Lun Leung. Proc. of IJCAI 2009, pages 559-565. Pasadena, USA, 2009.

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

3.8 Virtual Arc Consistency enforcing 17

3.8 Virtual Arc Consistency enforcing

The three phases of VAC are enforced in three different "Pass". Bool(P) is never built. Instead specific functions
(getVACCost) booleanize the WCSP on the fly. The domain variables of Bool(P) are the original variable domains
(saved and restored using trailing at each iteration) All the counter data-structures (k) are timestamped to avoid
clearing them at each iteration.

Note

Simultaneously AC (and potentially DAC, EAC) are maintained by proper queuing.

See Also

Soft Arc Consistency Revisited. Cooper et al. Artificial Intelligence. 2010.

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

18 CONTENTS

3.9 NC bucket sort

maintains a sorted list of variables having non-zero unary costs in order to make NC propagation incremental.

« variables are sorted into buckets

» each bucket is associated to a single interval of non-zero costs (using a power-of-two scaling, first bucket
interval is [1,2[, second interval is [2,4], etc.)

+ each variable is inserted into the bucket corresponding to its largest unary cost in its domain
« variables having all unary costs equal to zero do not belong to any bucket

NC propagation will revise only variables in the buckets associated to costs sufficiently large wrt current objective
bounds.

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

3.10

Variable elimination 19

3.10

Variable elimination

i-bounded variable elimination eliminates all variables with a degree less than or equal to i. It can be done
with arbitrary i-bound in preprocessing only and iff all their cost functions are in extension.

i-bounded variable elimination with i-bound less than or equal to two can be done during the search.

functional variable elimination eliminates all variables which have a bijective or functional binary hard con-
straint (ie ensuring a one-to-one or several-to-one value mapping) and iff all their cost functions are in exten-
sion. It can be done without limit on their degree, in preprocessing only.

Note

Variable elimination order used in preprocessing is either lexicographic or given by an external file
*.order (see toulbar2 options)
2-bounded variable elimination during search is optimal in the sense that any elimination order should
result in the same final graph

Warning

Itis not possible to display/save solutions when bounded variable elimination is applied in preprocessing
toulbar2 maintains a list of current cost functions for each variable. It uses the size of these lists as
an approximation of variable degrees. During the search, if variable x has three cost functions xy, xz,
Xxyz, its true degree is two but its approximate degree is three. In toulbar2 options, it is the approximate
degree which is given by the user for variable elimination during the search (thus, a value at most three).
But it is the true degree which is given by the user for variable elimination in preprocessing.

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

20 CONTENTS

3.11 Propagation loop

Propagates soft local consistencies and bounded variable elimination until all the propagation queues are empty or
a contradiction occurs.

While (queues are not empty or current objective bounds have changed):

1. queue for bounded variable elimination of degree at most two (except at preprocessing)
2. BAC queue
3. EAC queue
4. DAC queue
5. AC queue
6. monolithic (flow-based and DAG-based) global cost function propagation (partly incremental)
7. NC queue
8. returns to #1 until all the previous queues are empty
9. DEE queue
10. returns to #1 until all the previous queues are empty
11. VAC propagation (not incremental)
12. returns to #1 until all the previous queues are empty (and problem is VAC if enable)

13. exploits goods in pending separators for BTD-like methods

Queues are first-in / first-out lists of variables (avoiding multiple insertions). In case of a contradiction, queues are
explicitly emptied by WCSP::whenContradiction

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

3.12 Backtrack management 21

3.12 Backtrack management

Used by backtrack search methods. Allows to copy / restore the current state using Store::store and Store::restore
methods. All storable data modifications are trailed into specific stacks.

Trailing stacks are associated to each storable type:

+ Store::storeValue for storable domain values ::StoreValue (value supports, etc)

» Store::storeCost for storable costs ::StoreCost (inside cost functions, etc)

+ Store::storeDomain for enumerated domains (to manage holes inside domains)

« Store::storeConstraint for backtrackable lists of constraints

« Store::storeVariable for backtrackable lists of variables

 Store::storeSeparator for backtrackable lists of separators (see tree decomposition methods)

« Store::storeBiglnteger for very large integers ::StoreBiginteger used in solution counting methods

Memory for each stack is dynamically allocated by part of 2* with x initialized to ::STORE_SIZE and increased when
needed.

Note

storable data are not trailed at depth 0.

Warning

::Storelnt uses Store::storeValue stack (it assumes Value is encoded as int!).
Current storable data management is not multi-threading safe! (Store is a static virtual class relying on Store-
Basic<T> static members)

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

22 CONTENTS

4 Class Documentation

41 WeightedCSP Class Reference

Public Member Functions

« virtual int getindex () const =0
instantiation occurrence number of current WCSP object
« virtual string getName () const =0
WCSP filename (without its extension)
« virtual void * getSolver () const =0
special hook to access solver information
« virtual Cost getlLb () const =0
gets problem lower bound
« virtual Cost getUb () const =0
gets problem upper bound
+ virtual void updateUb (Cost newUb)=0
sets initial problem upper bound and each time a new solution is found
« virtual void enforceUb ()=0
enforces problem upper bound when exploring an alternative search node
« virtual void increaselLb (Cost addLb)=0
increases problem lower bound thanks to eg soft local consistencies
« virtual Cost finiteUb () const =0
computes the worst-case assignment finite cost (sum of maximum finite cost over all cost functions plus one)
« virtual void setInfiniteCost ()=0
updates infinite costs in all cost functions accordingly to the problem global lower and upper bounds
« virtual bool enumerated (int varindex) const =0
true if the variable has an enumerated domain
« virtual string getName (int varindex) const =0
« virtual Value getlinf (int varindex) const =0
minimum current domain value
« virtual Value getSup (int varlndex) const =0
maximum current domain value
« virtual Value getValue (int varindex) const =0
current assigned value
« virtual unsigned int getDomainSize (int varlndex) const =0
current domain size
« virtual bool getEnumDomain (int varindex, Value xarray)=0
gets current domain values in an array
+ virtual bool getEnumDomainAndCost (int varindex, ValueCost xarray)=0
gets current domain values and unary costs in an array
« virtual unsigned int getDomaininitSize (int varindex) const =0
gets initial domain size (warning! assumes EnumeratedVariable)
+ virtual Value toValue (int varindex, unsigned int idx)=0
gets value from index (warning! assumes EnumeratedVariable)
« virtual unsigned int tolndex (int varindex, Value value)=0
gets index from value (warning! assumes EnumeratedVariable)
« virtual int getDACOrder (int varindex) const =0
index of the variable in the DAC variable ordering
« virtual Value nextValue (int varindex, Value v) const =0

first value after v in the current domain or v if there is no value

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

4.1 WeightedCSP Class Reference 23

« virtual void increase (int varindex, Value newInf)=0
changes domain lower bound
« virtual void decrease (int varindex, Value newSup)=0
changes domain upper bound
« virtual void assign (int varindex, Value newValue)=0
assigns a variable and immediately propagates this assignment
« virtual void remove (int varindex, Value remValue)=0
removes a domain value (valid if done for an enumerated variable or on its domain bounds)
+ virtual void assignLS (vector< int > &varlndexes, vector< Value > &newValues)=0

assigns a set of variables at once and propagates (used by Local Search methods such as Large Neighborhood
Search)

« virtual Cost getUnaryCost (int varindex, Value v) const =0
unary cost associated to a domain value
« virtual Cost getMaxUnaryCost (int varlndex) const =0

maximum unary cost in the domain
« virtual Value getMaxUnaryCostValue (int varlndex) const =0

a value having the maximum unary cost in the domain
« virtual Value getSupport (int varlndex) const =0

NC/EAC unary support value.
« virtual Value getBestValue (int varindex) const =0

hint for some value ordering heuristics (only used by RDS)
« virtual void setBestValue (int varindex, Value v)=0

hint for some value ordering heuristics (only used by RDS)
« virtual bool getlsPartOfOptimalSolution ()=0

special flag used for debugging purposes only
« virtual void setlsPartOfOptimalSolution (bool v)=0

special flag used for debugging purposes only
+ virtual int getDegree (int varindex) const =0

approximate degree of a variable (ie number of active cost functions, see Variable elimination)
« virtual int getTrueDegree (int varindex) const =0

degree of a variable
« virtual Long getWeightedDegree (int varindex) const =0

weighted degree heuristic

« virtual void resetWeightedDegree (int varindex)=0
initialize weighted degree heuristic

« virtual void preprocessing ()=0

applies various preprocessing techniques to simplify the current problem
« virtual void sortConstraints ()=0

sorts the list of cost functions associated to each variable based on smallest problem variable indexes
« virtual void whenContradiction ()=0

after a contradiction, resets propagation queues
« virtual void propagate ()=0

propagates until a fix point is reached (or throws a contradiction)
« virtual bool verify ()=0

checks the propagation fix point is reached
« virtual unsigned int numberOfVariables () const =0

number of created variables
« virtual unsigned int numberOfUnassignedVariables () const =0

current number of unassigned variables
« virtual unsigned int numberOfConstraints () const =0

initial number of cost functions (before variable elimination)

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

24

CONTENTS

virtual unsigned int numberOfConnectedConstraints () const =0

current number of cost functions
virtual unsigned int numberOfConnectedBinaryConstraints () const =0

current number of binary cost functions
virtual unsigned int medianDomainSize () const =0

median current domain size of variables
virtual unsigned int medianDegree () const =0

median current degree of variables
virtual int getMaxDomainSize ()=0

maximum initial domain size found in all variables
virtual Value getDomainSizeSum ()=0

total sum of current domain sizes
virtual void cartProd (Biglnteger &cartesianProduct)=0

Cartesian product of current domain sizes.
virtual Long getNbDEE () const =0

number of value removals due to dead-end elimination
virtual int makeEnumeratedVariable (string n, Value iinf, Value isup)=0

create an enumerated variable with its domain bounds
virtual int makeEnumeratedVariable (string n, Value *d, int dsize)=0

create an enumerated variable with its domain values
virtual int makelntervalVariable (string n, Value iinf, Value isup)=0

create an interval variable with its domain bounds
virtual void postUnary (int xIndex, vector< Cost > &costs)=0
virtual void postNaryConstraintTuple (int ctrindex, Value xtuple, int arity, Cost cost)=0
virtual int postUnary (int xIndex, Value *d, int dsize, Cost penalty)=0
virtual int postGlobalConstraint (int xscopelndex, int arity, string &gcname, istream &file, int xconstrcounter=N-
ULL)=0
virtual int postWAmong (int xscopelndex, int arity, const string &semantics, const string &propagator, Cost
baseCost, const vector< Value > &values, int Ib, int ub)=0

post a soft among cost function
virtual void postWAmong (int xscopelndex, int arity, string semantics, Cost baseCost, Value *values, int nb-
Values, int Ib, int ub)=0
virtual void postWVarAmong (int xscopelndex, int arity, string semantics, Cost baseCost, Value xvalues, int
nbValues, int varindex)=0

post a weighted among cost function with the number of values encoded as a variable with index varindex (network-

based propagator only)
virtual int postWRegular (int *scopelndex, int arity, const string &semantics, const string &propagator, Cost
baseCost, int nbStates, const vector< WeightedObj< int > > &initial_States, const vector< WeightedObj<
int > > &accepting_States, const vector< DFATransition > &Wtransitions)=0

post a soft or weighted regular cost function
virtual void postWRegular (int *scopelndex, int arity, int nbStates, vector< pair< int, Cost > > initial_States,
vector< pair< int, Cost > > accepting_States, int xxWtransitions, vector< Cost > transitionsCosts)=0
virtual int postWAIIDIff (int xscopelndex, int arity, const string &semantics, const string &propagator, Cost
baseCost)=0

post a soft alldifferent cost function
virtual void postWAIIDIff (int xscopelndex, int arity, string semantics, Cost baseCost)=0
virtual int postWGcc (int xscopelndex, int arity, const string &semantics, const string &propagator, Cost base-
Cost, const vector< BoundedObj< Value > > &values)=0

post a soft global cardinality cost function
virtual void postWGcc (int xscopelndex, int arity, string semantics, Cost baseCost, Value xvalues, int nb-
Values, int xlb, int xub)=0
virtual int postWSame (int xscopelndexG1, int arityG1, int xscopelndexG2, int arityG2, const string &seman-
tics, const string &propagator, Cost baseCost)=0

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

4.1 WeightedCSP Class Reference 25

post a soft same cost function (a group of variables being a permutation of another group with the same size)
« virtual void postWSame (int xscopelndex, int arity, string semantics, Cost baseCost)=0
« virtual void postWSameGcc (int xscopelndex, int arity, string semantics, Cost baseCost, Value xvalues, int
nbValues, int xlb, int xub)=0
post a combination of a same and gcc cost function decomposed as a cost function network
« virtual int postWGrammarCNF (int xscopelndex, int arity, const string &semantics, const string &propagator,
Cost baseCost, int nbSymbols, int startSymbol, const vector< CFGProductionRule > WRuleToTerminal)=0
post a soft/weighted grammar cost function with the dynamic programming propagator and grammar in Chomsky
normal form
« virtual int postMST (int xscopelndex, int arity, const string &semantics, const string &propagator, Cost base-
Cost)=0
post a Spanning Tree hard constraint
« virtual int postMaxWeight (int xscopelndex, int arity, const string &semantics, const string &propagator, Cost
baseCost, const vector< WeightedVarValPair > weightFunction)=0
post a weighted max cost function (maximum cost of a set of unary cost functions associated to a set of variables)
« virtual void postWSum (int xscopelndex, int arity, string semantics, Cost baseCost, string comparator, int
rightRes)=0
post a soft linear constraint with unit coefficients
« virtual void postWVarSum (int xscopelndex, int arity, string semantics, Cost baseCost, string comparator, int
varlndex)=0
post a soft linear constraint with unit coefficients and variable right-hand side
« virtual void postWOverlap (int xscopelndex, int arity, string semantics, Cost baseCost, string comparator, int
rightRes)=0
post a soft overlap cost function (a group of variables being point-wise equivalent — and not equal to zero — to another
group with the same size)
« virtual vector< vector< int > > x getListSuccessors ()=0

generating additional variables vector created when berge decomposition are included in the WCSP
« virtual bool isGlobal ()=0

true if there are soft global constraints defined in the problem
« virtual void read_wcsp (const char xfleName)=0

load problem in native wcsp format (Weighted Constraint Satisfaction Problem file format (wcsp))

« virtual void read_uai2008 (const char xfileName)=0
load problem in UAI 2008 format (seehttp://graphmod.ics.uci.edu/uail8/FileFormat andhttp—
://www.cs.huji.ac.il/project/UAI10/fileFormat.php)

« virtual void read_random (int n, int m, vector< int > &p, int seed, bool forceSubModular=false, string global-

name="")=0

create a random WCSP with n variables, domain size m, array p where the first element is a percentage of tuples
with a nonzero cost and next elements are the number of random cost functions for each different arity (starting
with arity two), random seed, a flag to have a percentage (last element in the array p) of the binary cost functions
being permutated submodular, and a string to use a specific global cost function instead of random cost functions in
extension

« virtual void read_wecnf (const char xfileName)=0

load problem in (w)cnf format (seehttp://www.maxsat .udl.cat/08/index.php?disp=requirements)
« virtual void read_gpbo (const char *fileName)=0

load quadratic pseudo-Boolean optimization problem in unconstrained quadratic programming text format (first text

line with n, number of variables and m, number of triplets, followed by the m triplets (x,y,cost) describing the sparse
symmetric nXn cost matrix with variable indexes such that x <=y and any positive or negative real numbers for costs)

« virtual const vector< Value > & getSolution ()=0
returns current best solution
« virtual void setSolution (TAssign *sol=NULL)=0
set best solution from current assigned values or from a given assignment (for BTD-like methods)
« virtual void printSolution (ostream &o0s)=0
prints current best solution
« virtual void print (ostream &os)=0

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

http://graphmod.ics.uci.edu/uai08/FileFormat
http://www.cs.huji.ac.il/project/UAI10/fileFormat.php
http://www.cs.huji.ac.il/project/UAI10/fileFormat.php
http://www.maxsat.udl.cat/08/index.php?disp=requirements

26

CONTENTS

print current domains and active cost functions (see Output messages, verbosity options and debugging)
« virtual void dump (ostream &os, bool original=true)=0

output the current WCSP into a file in wesp format

Static Public Member Functions

« static WeightedCSP x makeWeightedCSP (Cost upperBound, void xsolver=NULL)
Weighted CSP factory.

41.1 Detailed Description

Abstract class WeightedCSP representing a weighted constraint satisfaction problem

» problem lower and upper bounds

« list of variables with their finite domains (either represented by an enumerated list of values, or by a single

interval)

« list of cost functions (created before and during search by variable elimination of variables with small degree)

* local consistency propagation (variable-based propagation) including cluster tree decomposition caching
(separator-based cache)

Note

Variables are referenced by their lexicographic index number (as returned by eg WeightedCSP::make-
EnumeratedVariable)

Cost functions are referenced by their lexicographic index number (as returned by eg WeightedCSP::post-
BinaryConstraint)

4.1.2 Member Function Documentation

4.1.2.1 virtual void WeightedCSP::assignLS (vector< int > & varindexes, vector< Value > & newValues) [pure

virtual]

assigns a set of variables at once and propagates (used by Local Search methods such as Large Neighborhood

Search)

Parameters
varindexes | vector of variable indexes as returned by makeXXXVariable
newValues | vector of values to be assigned to the corresponding variables

4.1.2.2 virtual void WeightedCSP::cartProd (BigInteger & cartesianProduct) [pure virtual]

Cartesian product of current domain sizes.

Parameters

cartesianProduct

result obtained by the GNU Multiple Precision Arithmetic Library GMP

4.1.2.3 virtual void WeightedCSP::dump (ostream & os, bool original =t rue) [pure virtual]

output the current WCSP into a file in wesp format

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

4.1 WeightedCSP Class Reference 27

Parameters

os | output file

original | if true then keeps all variables with their original domain size else uses unassigned variables
and current domains recoding variable indexes

4.1.2.4 virtual Cost WeightedCSP::finiteUb ()const [pure virtual]

computes the worst-case assignment finite cost (sum of maximum finite cost over all cost functions plus one)

Returns

the worst-case assignment finite cost

Warning

current problem should be completely loaded and propagated before calling this function

4.1.25 virtual string WeightedCSP::getName (int varindex) const [pure virtual]
Note

by default, variables names are integers, starting at zero

4.1.2.6 virtual Value WeightedCSP::getValue (int varindex) const [pure virtual]
current assigned value

Warning

undefined if not assigned yet

4.1.2.7 virtual void WeightedCSP::increaseLb (CostaddLb) [pure virtuall]

increases problem lower bound thanks to eg soft local consistencies

Parameters

addLb | increment value to be added to the problem lower bound

4.1.2.8 virtual int WeightedCSP::postGlobalConstraint (int + scopelndex, int arity, string & gcname, istream & file, int *
constrcounter=NULL) [pure virtuall]

4.1.2.9 virtual int WeightedCSP::postMaxWeight (int « scopelndex, int arity, const string & semantics, const string &
propagator, Cost baseCost, const vector< WeightedVarValPair > weightFunction) [pure virtuall]

post a weighted max cost function (maximum cost of a set of unary cost functions associated to a set of variables)

Parameters

scopelndex | an array of variable indexes as returned by WeightedCSP::makeEnumeratedVariable

arity | the size of scopelndex

semantics | the semantics of the global cost function: "val"

propagator | the propagation method ("DAG" only)

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

28 CONTENTS
baseCost | if a variable-value pair does not exist in weightFunction, its weight will be mapped to base-
Cost.
weightFunction | a vector of WeightedVarValPair containing a mapping from variable-value pairs to their
weights.

4.1.2.10 virtual int WeightedCSP::postMST (int x scopelndex, int arity, const string & semantics, const string & propagator,

Cost baseCost)

[pure virtual]

post a Spanning Tree hard constraint

Parameters
scopelndex | an array of variable indexes as returned by WeightedCSP::makeEnumeratedVariable
arity | the size of scopelndex
semantics | the semantics of the global cost function: "hard"
propagator | the propagation method ("DAG" only)
baseCost | unused in the current implementation (MAX_COST)
4.1.2.11 virtual void WeightedCSP::postNaryConstraintTuple (int cirindex, Value * tuple, int arity, Cost cost) [pure

virtual]

Warning

must call WeightedCSP::postNaryConstraintEnd after giving cost tuples

4.1.2.12 virtual void WeightedCSP::postUnary (int xindex, vector< Cost > & costs)

4.1.2.13 virtual int WeightedCSP::postUnary (int xIndex, Value x d, int dsize, Cost penalty)

Warning

[pure virtual]

[pure virtual]

must call WeightedCSP::sortConstraints after all cost functions have been posted (see WeightedCSP::sort-

Constraints)

4.1.2.14 virtual int WeightedCSP::postWAIIDff (int « scopelndex, int arity, const string & semantics, const string &

propagator, Cost baseCost)

[pure virtual]

post a soft alldifferent cost function

Parameters
scopelndex | an array of variable indexes as returned by WeightedCSP::makeEnumeratedVariable
arity | the size of the array
semantics | the semantics of the global cost function: for flow-based propagator: "var" or "dec" or "dechi"
(decomposed into a binary cost function complete network), for DAG-based propagator:
"var", for network-based propagator: "hard" or "lin" or "quad" (decomposed based on wa-
mong)
propagator | the propagation method ("flow", "DAG", "network")
baseCost | the scaling factor of the violation
4.1.2.15 virtual void WeightedCSP::postWAIIDiff (int x scopelndex, int arity, string semantics, Cost baseCost) [pure

virtual]

41.2.16

virtual int WeightedCSP::postWAmong (int x scopelndex, int arity, const string & semantics, const string &
propagator, Cost baseCost, const vector< Value > & values, int Ib, int ub)

[pure virtual]

post a soft among cost function

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

4.1 WeightedCSP Class Reference 29

Parameters
scopelndex | an array of variable indexes as returned by WeightedCSP::makeEnumeratedVariable
arity | the size of the array
semantics | the semantics of the global cost function: "var" or — "hard" or "lin" or "quad" (network-based
propagator only)—
propagator | the propagation method (only "DAG" or "network")
baseCost | the scaling factor of the violation
values | a vector of values to be restricted
Ib | afixed lower bound for the number variables to be assigned to the values in values
ub | afixed upper bound for the number variables to be assigned to the values in values
4.1.2.17 virtual void WeightedCSP::postWAmong (int « scopelndex, int arity, string semantics, Cost baseCost, Value

values, int nbValues, int Ib, int ub)

41.2.18

[pure virtual]

virtual int WeightedCSP::postWGcc (int « scopelndex, int arity, const string & semantics, const string & propagator,
Cost baseCost, const vector< BoundedObj< Value > > & values)

[pure virtual]

post a soft global cardinality cost function

Parameters
scopelndex | an array of variable indexes as returned by WeightedCSP::makeEnumeratedVariable
arity | the size of the array
semantics | the semantics of the global cost function: "var" (DAG-based propagator only) or — "var" or
"dec" or "wdec" (flow-based propagator only) or — "hard" or "lin" or "quad" (network-based
propagator only)—
propagator | the propagation method ("flow", "DAG", "network")
baseCost | the scaling factor of the violation
values | a vector of BoundedObj, specifying the lower and upper bounds of each value, restricting the
number of variables can be assigned to them
4.1.2.19 virtual void WeightedCSP::postWGcc (int x scopelndex, int arity, string semantics, Cost baseCost, Value * values,

int nbValues, int x Ib, intx ub)

4.1.2.20

[pure virtual]

virtual int WeightedCSP::postWGrammarCNF (int « scopelndex, int arity, const string & semantics, const string &

propagator, Cost baseCost, int nbSymbols, int startSymbol, const vector<< CFGProductionRule > WRuleToTerminal
) [pure virtual]

post a soft/weighted grammar cost function with the dynamic programming propagator and grammar in Chomsky

normal form

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

comparator, int rightRes)

30 CONTENTS
Parameters
scopelndex | an array of the first group of variable indexes as returned by WeightedCSP::make-
EnumeratedVariable
arity | the size of scopelndex
semantics | the semantics of the global cost function: "var" or "weight"
propagator | the propagation method ("DAG" only)
baseCost | the scaling factor of the violation
nbSymbols | the number of symbols in the corresponding grammar. Symbols are indexed as 0, 1, ...,
nbSymbols-1
startSymbol | the index of the starting symbol
WRuleTo- | a vector of ::CFGProductionRule. Note that:
Terminal
- if orderin CFGProductionRule is set to 0, it is classified as A -> v, where A is the index
of the terminal symbol and v is the value.
« if orderin CFGProductionRule is set to 1, it is classified as A -> BC, where A,B,C the
index of the nonterminal symbols.
« if orderin CFGProductionRule is set to 2, it is classified as weighted A -> v, where A
is the index of the terminal symbol and v is the value.
« if orderin CFGProductionRule is set to 3, it is classified as weighted A -> BC, where
A,B,C the index of the nonterminal symbols.
« if orderin CFGProductionRule is set to values greater than 3, it is ignored.
4.1.2.21 virtual void WeightedCSP::postWOverlap (int + scopelndex, int arity, string semantics, Cost baseCost, string

[pure virtual]

post a soft overlap cost function (a group of variables being point-wise equivalent — and not equal to zero — to
another group with the same size)

Parameters
scopelndex | an array of variable indexes as returned by WeightedCSP::makeEnumeratedVariable
arity | the size of scopelndex (should be an even value)
semantics | the semantics of the global cost function: "hard" or "lin" or "quad" (network-based propagator
only)
propagator | the propagation method ("network" only)
baseCost | the scaling factor of the violation.
comparator | the point-wise comparison operator applied to the number of equivalent variables ("==", "I=",
"< > >
rightRes | right-hand side value of the comparison

4.1.2.22 virtual int WeightedCSP::postWRegular (int « scopelndex, int arity, const string & semantics, const string &
propagator, Cost baseCost, int nbStates, const vector<< WeightedObj< int > > & initial_States, const vector<

WeightedObj< int > > & accepting_States, const vector<< DFATransition > & Wiransitions)

virtual]

[pure

post a soft or weighted regular cost function

Parameters

scopelndex

an array of variable indexes as returned by WeightedCSP::makeEnumeratedVariable

arity

the size of the array

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

4.1 WeightedCSP Class Reference 31

semantics | the semantics of the soft global cost function: "var" or "edit" (flow-based propagator) or —"var"
(DAG-based propagator)— (unused parameter for network-based propagator)
propagator | the propagation method ("flow", "DAG", "network")
baseCost | the scaling factor of the violation ("flow", "DAG")
nbStates | the number of the states in the corresponding DFA. The states are indexed as 0, 1, ..., nb-

States-1

initial_States

a vector of WeightedObj specifying the starting states with weight

accepting - | a vector of WeightedObj specifying the final states
States
Wiransitions | a vector of (weighted) transitions
Warning

Weights are ignored in the current implementation of DAG and flow-based propagators

4.1.2.23 Vvirtual void WeightedCSP::postWRegular (int x scopelndex, int arity, int nbStates, vector< pair< int, Cost > >
initial_States, vector< pair< int, Cost > > accepting_States, int xx Wiransitions, vector< Cost > transitionsCosts
) [pure virtual]

4.1.2.24 virtual int WeightedCSP::postWSame (int « scopelndexG1, int arityG1, int x scopelndexG2, int arityG2, const string

& semantics, const string & propagator, Cost baseCost)

[pure virtual]

post a soft same cost function (a group of variables being a permutation of another group with the same size)

Parameters
scopelndexG1 | an array of the first group of variable indexes as returned by WeightedCSP::make-
EnumeratedVariable
arityG1 | the size of scopelndexG1
scopelndexG2 | an array of the second group of variable indexes as returned by WeightedCSP::make-
EnumeratedVariable
arityG2 | the size of scopelndexG2
semantics | the semantics of the global cost function: "var" or — "hard" or "lin" or "quad" (network-based
propagator only)—
propagator | the propagation method ("flow" or "network")
baseCost | the scaling factor of the violation.
4.1.2.25 virtual void WeightedCSP::postWSame (int x scopelndex, int arity, string semantics, Cost baseCost) [pure

virtual]

4.1.2.26

virtual void WeightedCSP::postWSum (int x scopelndex, int arity, string semantics, Cost baseCost, string
comparator, int rightRes)

[pure virtual]

post a soft linear constraint with unit coefficients

Parameters
scopelndex | an array of variable indexes as returned by WeightedCSP::makeEnumeratedVariable
arity | the size of scopelndex
semantics | the semantics of the global cost function: "hard" or "lin" or "quad" (network-based propagator
only)
propagator | the propagation method ("network" only)
baseCost | the scaling factor of the violation
comparator | the comparison operator of the linear constraint ("==", "I=", "<", "<=", "> ", ">=")

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

32 CONTENTS

rightRes | right-hand side value of the linear constraint

4.1.2.27 Vvirtual void WeightedCSP::read_uai2008 (const char « fileName) [pure virtuall]

load problem in UAI 2008 format (see http://graphmod.ics.uci.edu/uail8/FileFormat and
http://www.cs.huji.ac.il/project/UAI10/fileFormat.php)

Warning

UAI10 evidence file format not recognized by toulbar2 as it does not allow multiple evidence (you should
remove the first value in the file)

4.1.2.28 virtual void WeightedCSP::setInfiniteCost() [pure virtuall]

updates infinite costs in all cost functions accordingly to the problem global lower and upper bounds

Warning

to be used in preprocessing only

4.1.2.29 virtual void WeightedCSP::sortConstraints () [pure virtual]

sorts the list of cost functions associated to each variable based on smallest problem variable indexes

Warning

side-effect: updates DAC order according to an existing variable elimination order

Note

must be called after creating all the cost functions and before solving the problem

4.2 WeightedCSPSolver Class Reference

Public Member Functions

+ virtual WeightedCSP * getWCSP ()=0

access to its associated Weighted CSP
« virtual Long getNbNodes () const =0

number of search nodes (see WeightedCSPSolver::increase, WeightedCSPSolver:.decrease, WeightedCSPSolver-
::assign, WeightedCSPSolver::remove)

« virtual Long getNbBacktracks () const =0
number of backtracks
« virtual void increase (int varlndex, Value value, bool reverse=false)=0

changes domain lower bound and propagates
« virtual void decrease (int varindex, Value value, bool reverse=false)=0

changes domain upper bound and propagates
« virtual void assign (int varindex, Value value, bool reverse=false)=0

assigns a variable and propagates
« virtual void remove (int varlndex, Value value, bool reverse=false)=0

removes a domain value and propagates (valid if done for an enumerated variable or on its domain bounds)
« virtual void read_wecsp (const char xfileName)=0

reads a WCSP from a file in wecsp text format (can be other formats if using specific ::ToulBar2 global variables)

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

http://graphmod.ics.uci.edu/uai08/FileFormat
http://www.cs.huji.ac.il/project/UAI10/fileFormat.php

4.2 WeightedCSPSolver Class Reference 33

virtual void read_random (int n, int m, vector< int > &p, int seed, bool forceSubModular=false, string global-
name="")=0
create a random WCSPF, see WeightedCSP::read_random
virtual bool solve ()=0
simplifies and solves to optimality the problem
virtual Cost narycsp (string cmd, vector< Value > &solution)=0
solves the current problem using INCOP local search solver by Bertrand Neveu
virtual bool solve_symmax2sat (int n, int m, int xposx, int «posy, double xcost, int xsol)=0
quadratic unconstrained pseudo-Boolean optimization Maximize h' x W x h where W is expressed by all its non-zero
half squared matrix costs (can be positive or negative, with Vi, posx[i] < posyli])
virtual void dump_wecsp (const char xfileName, bool original=true)=0
output current problem in a file
virtual void read_solution (const char xfileName)=0
read a solution from a file
virtual void parse_solution (const char xcertificate)=0
read a solution from a string (see ToulBar2 option -x)
virtual Cost getSolution (vector< Value > &solution)=0

after solving the problem, add the optimal solution in the input/output vector and returns its optimum cost (warning!
do not use it if doing solution counting or if there is no solution, see WeightedCSPSolver::solve output for that)

Static Public Member Functions

4.21

static WeightedCSPSolver * makeWeightedCSPSolver (Cost initUpperBound)
WeightedCSP Solver factory.

Detailed Description

Abstract class WeightedCSPSolver representing a WCSP solver

422

4.2.2.1

link to a WeightedCSP

generic complete solving method configurable through global variables (see ::ToulBar2 class and command
line options)

optimal solution available after problem solving

elementary decision operations on domains of variables

statistics information (number of nodes and backtracks)

problem file format reader (multiple formats, see Weighted Constraint Satisfaction Problem file format (wcsp))

solution checker (output the cost of a given solution)

Member Function Documentation

virtual void WeightedCSPSolver::dump_wcesp (const char x fileName, bool original =t rue) [pure
virtuall]

output current problem in a file

See Also

WeightedCSP::dump

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

34 CONTENTS

4.2.2.2 virtual Cost WeightedCSPSolver::narycsp (string cmd, vector< Value > & solution) [pure virtual]

solves the current problem using INCOP local search solver by Bertrand Neveu

Returns

best solution cost found

Parameters
cmd | command line argument for narycsp INCOP local search solver (cmd format: lower-
bound randomseed nbiterations method nbmoves neighborhoodchoice neighborhoodchoice2
minnbneighbors maxnbneighbors neighborhoodchoice3 autotuning tracemode)
solution | best solution assignment found (MUST BE INITIALIZED WITH A DEFAULT COMPLETE A-
SSIGNMENT)
Warning

cannot solve problems with global cost functions

Note
side-effects: updates current problem upper bound and propagates, best solution saved (using WCSP::set-
BestValue)

4.2.2.3 virtual bool WeightedCSPSolver::solve () [pure virtual]

simplifies and solves to optimality the problem

Returns

false if there is no solution found

Warning

after solving, the current problem has been modified by various preprocessing techniques

DO NOT READ VALUES OF ASSIGNED VARIABLES USING WeightedCSP::getValue (temporally wrong
assignments due to variable elimination in preprocessing) BUT USE WeightedCSPSolver::getSolution INST-
EAD

4.2.2.4 virtual bool WeightedCSPSolver::solve_symmax2sat (int n, int m, int « posx, int x posy, double x cost, int x sol)
[pure virtual]

quadratic unconstrained pseudo-Boolean optimization Maximize &’ x W x h where W is expressed by all its non-zero
half squared matrix costs (can be positive or negative, with Vi, posx[i] < posy[i])

Note

costs for posx # posy are multiplied by 2 by this method

by convention: hi=1=x=0andh=—-1=x=1
Warning

does not allow infinite costs (no forbidden assignments, unconstrained optimization)
Returns

true if at least one solution has been found (array sol being filled with the best solution)
See Also

::solvesymmax2sat_ for Fortran call

Generated on Mon Apr 25 2016 12:33:03 for toulbar2 by Doxygen

	Main Page
	toulbar2
	Module Documentation
	Weighted Constraint Satisfaction Problem file format (wcsp)
	Variable and cost function modeling
	Solving cost function networks
	Output messages, verbosity options and debugging
	Preprocessing techniques
	Variable and value search ordering heuristics
	Soft arc consistency and problem reformulation
	Virtual Arc Consistency enforcing
	NC bucket sort
	Variable elimination
	Propagation loop
	Backtrack management

	Class Documentation
	WeightedCSP Class Reference
	Detailed Description
	Member Function Documentation

	WeightedCSPSolver Class Reference
	Detailed Description
	Member Function Documentation

