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Overview

A basic component for our modelling is that all these models are

build around marginals that on Cox form. The marginal Cox model

can be fitted efficiently in the mets package.

The basic models assumes that each subject has a marginal on

Cox-form

λs(k,i)(t) exp(XT
kiβ).

where s(k, i) gives the strata for the subject.

We here discuss the

• robust standard errors of

– regression parameters

– baseline

• cumulative residuals score test

First we generate some data from the Clayton-Oakes model, with

5 members in each cluster and a variance parameter at 2

1 library(mets)

2 set.seed(1000) # to control output in simulatins for
p-values below.

3 n <- 1000

4 k <- 5

5 theta <- 2

6 data <- simClaytonOakes(n,k,theta,0.3,3)

7 head(data)

Loading required package: timereg

Loading required package: survival

Loading required package: lava

lava version 1.6.3

mets version 1.2.4

Attaching package: ‘mets’

The following object is masked _by_ ‘.GlobalEnv’:

object.defined

time status x cluster mintime lefttime truncated

1 0.1406317 1 0 1 0.1406317 0 0

2 0.4593768 1 0 1 0.1406317 0 0

3 1.0952678 1 0 1 0.1406317 0 0

4 0.2057554 1 1 1 0.1406317 0 0

5 0.6776620 1 0 1 0.1406317 0 0

6 1.6093755 1 0 2 0.1092390 0 0

Now fitting the and producing robust standard errors for both

regression parameters and baseline.
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Note that

Âs(t)− As(t) = ∑
k

∑
i

∫ t

0
1/SsdMs

ki − Ps(t)βk (1)

with Ps(t) a derivative wrt to β, and

β̂ − β = ∑
k

(∑
i

∫ τ

0
(Zik − Es)dMs

ik) (2)

with

Mki(t) = Nki(t)−
∫ t

0
Yki(s) exp(Zkiβ)dΛs(ki)(t) (3)

the basic 0-mean processes, that are martingales in the iid setting.

The variance of the baseline of strata s is

∑
k

(∑
i

∫ t

0
1/S0s(ki)dM̂s

ki)
2 (4)

that can be computed using the particular structure

dM̂ik(t) = dNik(t)− 1/S0s(i,k) exp(Zikβ)dNs.(t) (5)

This robust variance of the baseline and the iid decomposition

for β is computed in mets as:

1 out <- phreg(Surv(time,status)~x+cluster(cluster),data=data)

2 summary(out)

3 # robust standard errors attached to output

4 rob <- robust.phreg(out)

5

6 # making iid decomposition of regression parameters

7 betaiid <- iid(out)

8 head(betaiid)

9 # robust standard errors

10 crossprod(betaiid)^.5

11 # same as

n events

5000 4854

1000 clusters

Estimate S.E. dU^-1/2 P-value

x 0.287859 0.028177 0.028897 0

[,1]

1 -3.461601e-04

2 -1.449189e-03

3 -3.898156e-05

4 4.215605e-04

5 3.425390e-04

6 -7.706668e-05

[,1]

[1,] 0.02817714

Looking at the plot with robust standard errors

Figure 1: Baseline with robust stan-
dard errors.

1 bplot(rob,se=TRUE,robust=TRUE)
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One can also make survival prediction with robust standard

errors using the phreg.

1 pp <- predict(out,data[1:20,],se=TRUE,robust=TRUE)

1 plot(pp,se=TRUE,whichx=1:10)

Figure 2: Survival predictions with
robust standard errors for Cox model

Finally, just to check that we can recover the model we also esti-

mate the dependence parameter

1 tt <- twostageMLE(out,data=data)

2 summary(tt)

Dependence parameter for Clayton-Oakes model

Variance of Gamma distributed random effects

$estimates

Coef. SE z P-val Kendall tau SE

dependence1 0.5316753 0.03497789 15.20032 0 0.2100093 0.0109146

$type

NULL

attr(,"class")

[1] "summary.mets.twostage"

Goodness of fit

The observed score process is given by

U(t, β̂) = ∑
k

∑
i

∫ t

0
(Zki − Ês)dM̂s

ki (6)

where s is strata, this has as iid decomposition as

Û(t) = ∑
k

∑
i

∫ t

0
(Zki − Es)dMs

ki − ∑
k

Itβk (7)

where βk is the iid decomposition of the score process for the true β

βk = ∑
i

∫ t

0
(Zki − Es)dMs

ki (8)

and It is the derivative of the total score with respect to β.

This observed score can be resampled given it is on iid form in

terms of clusters.

Now using the cumulative score process for checking propor-

tional hazards

1 gout <- gof(out)

2 gout

Cumulative score process test for Proportionality:

Sup|U(t)| pval

x 30.24353 0.401

The p-value reflects wheter the observed score process is consis-

tent with the model.

Figure 3: Goodness of fit for clustered
Cox model.

1 plot(gout)
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Cluster stratified Cox models

For clustered data it is possible to estimate the regression coeffi-

cient within clusters by using Cox’s partial likelihood stratified on

clusters.

Note, here that the data is generated with a different subject

specific structure, so we will not recover the β at 0.3 and the model

will not be a proportional Cox model, we we would also expect to

reject "proportionality" with the gof-test.

The model can be thought of as

λk(t) exp(XT
kiβ)

where λk(t) is some cluster specific baseline.

The regression coefficient β can be estimated by using the partial

likelihood for clusters.

1 out <- phreg(Surv(time,status)~x+strata(cluster),data=data)

2 summary(out)

n events

5000 4854

Estimate S.E. dU^-1/2 P-value

x 0.406307 0.032925 0.039226 0

The cumulative score processes can still be used to validate the

model

1 gg <- gof (out)

2 summary(gg)

Cumulative score process test for Proportionality:

Sup|U(t)| pval

x 27.55616 0.195


